Analyzing competing effects between heat transfer area and natural convection to enhance heat transfer in latent heat storage

被引:5
|
作者
Huang, Bingkun [1 ]
Yang, Shimi [1 ]
Xu, Jiyuan [2 ]
Hao, Menglong [3 ]
Sun, Yiwei [4 ]
Wang, Jun [1 ]
Lund, Peter D. [1 ,5 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Nanjing 210096, Peoples R China
[2] Nanjing Res Inst Elect Technol, Nanjing 210039, Peoples R China
[3] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
[4] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Met Mat, Nanjing 211189, Peoples R China
[5] Aalto Univ, Sch Sci, POB 15100, FI-00076 Aalto, Espoo, Finland
基金
中国国家自然科学基金;
关键词
Latent heat storage; Phase change material; Fins; Heat transfer; natural convection; Velocity vector; PHASE-CHANGE MATERIAL; ENERGY-STORAGE; MELTING ENHANCEMENT; PCM; UNIT; PERFORMANCE; ENCLOSURES; CAVITY; FINS; TUBE;
D O I
10.1016/j.est.2023.109882
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Phase change materials (PCMs) are effective means of storing thermal energy and to balance temporal supplydemand mismatch. To enhance heat transfer within the PCM, internal fins are often employed to increase the heat exchange area, but they usually suppress simultaneously natural convection reducing the performance of the PCM storage. To better understand these two conflicting effects and to find a better trade-off between the different heat transfer means, a comprehensive numerical study of PCM storage with different fin shapes (straight and sinusoidal wavy fins) and surface areas, but with equivalent volume fraction, was accomplished. The results show that increasing the surface area of sinusoidal fins improves only marginally the heat transfer, mainly because the flow velocity of natural convection along the normal direction of the solid interface is inhibited. The velocity normal to the solid interface was found to be the most critical factors to the overall heat transfer efficiency of the system and to the time needed to complete the phase change in the PCM container. The study clearly shows that to enhance the heat transfer in PCM, the effects from natural convection (direction and strength) play a more important role than the heat exchange surface area. To improve the thermal performance and efficiency of PCM storage systems both factors need to be combined in an optimal way.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Heat transfer enhancement in latent heat thermal storage system for buildings
    Stritih, U
    ENERGY AND BUILDINGS, 2003, 35 (11) : 1097 - 1104
  • [42] Heat Transfer by Natural Convection between Smooth Heated Plates
    Inagaki, Terumi
    Shirato, Tetsuro
    Okabe, Taro
    KAGAKU KOGAKU RONBUNSHU, 2011, 37 (04) : 327 - 337
  • [43] Heat transfer and natural convection of nanofluids in porous media
    Bourantas, G. C.
    Skouras, E. D.
    Loukopoulos, V. C.
    Burganos, V. N.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2014, 43 : 45 - 56
  • [44] Transient heat transfer characteristics of cooling fluid loop with latent heat storage unit
    Zhang, Xuan
    Li, Bo
    Yu, Cheng
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [45] Effects of latent heat storage on heat transfer in a forced flow in a porous layer
    Najjari, Mustapha
    Ben Nasrallah, Sassi
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (07) : 825 - 833
  • [46] Performance of a rotating latent heat thermal energy storage unit with heat transfer from different surfaces
    Qu, Xiaohang
    Qi, Xiaoni
    Zhang, Yi
    Zhou, Dan
    APPLIED THERMAL ENGINEERING, 2024, 248
  • [47] Heat transfer studies on solar still assisted with and without latent heat storage material
    Vigneswaran, V. S.
    Kumaresan, G.
    Elansezhiyan, S.
    Velraj, R.
    DESALINATION AND WATER TREATMENT, 2019, 140 : 1 - 6
  • [48] Heat Transfer Enhancement of Latent Heat Storage Using Novel Quadruple Helical Fins
    Sundaramahalingam, Athimoolam
    Jegadheeswaran, Selvaraj
    HEAT TRANSFER ENGINEERING, 2022, 43 (22) : 1900 - 1917
  • [49] Assessment of Heat Transfer Characteristics of a Latent Heat Thermal Energy Storage System: Multi Tube Design
    Sodhi, Gurpreet Singh
    Vigneshwaran, K.
    Jaiswal, Abhishek Kumar
    Muthukumar, P.
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4677 - 4683
  • [50] Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins
    Deng, Zilong
    Wu, Suchen
    Xu, Hao
    Chen, Yongping
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2020, 28 (11) : 2857 - 2871