Analyzing competing effects between heat transfer area and natural convection to enhance heat transfer in latent heat storage

被引:5
|
作者
Huang, Bingkun [1 ]
Yang, Shimi [1 ]
Xu, Jiyuan [2 ]
Hao, Menglong [3 ]
Sun, Yiwei [4 ]
Wang, Jun [1 ]
Lund, Peter D. [1 ,5 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Nanjing 210096, Peoples R China
[2] Nanjing Res Inst Elect Technol, Nanjing 210039, Peoples R China
[3] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
[4] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Met Mat, Nanjing 211189, Peoples R China
[5] Aalto Univ, Sch Sci, POB 15100, FI-00076 Aalto, Espoo, Finland
基金
中国国家自然科学基金;
关键词
Latent heat storage; Phase change material; Fins; Heat transfer; natural convection; Velocity vector; PHASE-CHANGE MATERIAL; ENERGY-STORAGE; MELTING ENHANCEMENT; PCM; UNIT; PERFORMANCE; ENCLOSURES; CAVITY; FINS; TUBE;
D O I
10.1016/j.est.2023.109882
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Phase change materials (PCMs) are effective means of storing thermal energy and to balance temporal supplydemand mismatch. To enhance heat transfer within the PCM, internal fins are often employed to increase the heat exchange area, but they usually suppress simultaneously natural convection reducing the performance of the PCM storage. To better understand these two conflicting effects and to find a better trade-off between the different heat transfer means, a comprehensive numerical study of PCM storage with different fin shapes (straight and sinusoidal wavy fins) and surface areas, but with equivalent volume fraction, was accomplished. The results show that increasing the surface area of sinusoidal fins improves only marginally the heat transfer, mainly because the flow velocity of natural convection along the normal direction of the solid interface is inhibited. The velocity normal to the solid interface was found to be the most critical factors to the overall heat transfer efficiency of the system and to the time needed to complete the phase change in the PCM container. The study clearly shows that to enhance the heat transfer in PCM, the effects from natural convection (direction and strength) play a more important role than the heat exchange surface area. To improve the thermal performance and efficiency of PCM storage systems both factors need to be combined in an optimal way.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Determination of heat transfer coefficients in direct contact latent heat storage systems
    Kunkel, Sven
    Teumer, Tobias
    Doernhofer, Patrick
    Schlachter, Kerstin
    Weldeslasie, Yohana
    Kuehr, Martin
    Raedle, Matthias
    Repke, Jens-Uwe
    APPLIED THERMAL ENGINEERING, 2018, 145 : 71 - 79
  • [12] Enrichment of heat transfer in a latent heat storage unit using longitudinal fins
    Mehta, Digant S.
    Vaghela, Bhavesh
    Rathod, Manish K.
    Banerjee, Jyotirmay
    HEAT TRANSFER, 2020, 49 (05) : 2659 - 2685
  • [13] Latent Heat Storage: Storage Materials, Heat Transfer, and Applications
    Ghaib, Karim
    CHEMBIOENG REVIEWS, 2017, 4 (04): : 215 - 224
  • [14] A review of the recent advances in the heat transfer physics in latent heat storage systems
    Sarath, K. P.
    Osman, Mulani Feroz
    Mukhesh, R.
    Manu, K. V.
    Deepu, M.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 42
  • [15] Evaluation and optimisation of hybrid sensible-latent heat thermal energy storage unit with natural stones to enhance heat transfer
    Zhang, Shuai
    Yan, Yuying
    RENEWABLE ENERGY, 2023, 215
  • [16] Effect of graphite fin on heat transfer enhancement of rectangular shell and tube latent heat storage
    Nguyen, Thanh Phuong
    Ramadan, Zaher
    Hong, Sung Joo
    Park, Chan Woo
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 194
  • [17] Dynamic heat transfer characteristics of gravity heat pipe with heat storage
    Zhang, Xuan
    Wu, Suchen
    Zhang, Chengbin
    Chen, Yongping
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [18] A new design to enhance the conductive and convective heat transfer of latent heat thermal energy storage units
    Eisapour, Amir Hossein
    Shafaghat, A. H.
    Mohammed, Hayder I.
    Eisapour, Mehdi
    Talebizadehsardari, Pouyan
    Brambilla, Arianna
    Fung, Alan S.
    APPLIED THERMAL ENGINEERING, 2022, 215
  • [19] Synergistic enhancement of heat conduction and natural convection in latent heat storage cavities with longitudinal fins
    Liu, Hua-Yang
    Yang, Shan-Shan
    Qu, Bei-Cheng
    Wu, Chun-Mei
    Li, You-Rong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 236
  • [20] Experimental investigation of heat transfer characteristics in a vertical multi-tube latent heat thermal energy storage system
    Shen, Gang
    Wang, Xiaolin
    Chan, Andrew
    2ND INTERNATIONAL CONFERENCE ON ENERGY AND POWER (ICEP2018), 2019, 160 : 332 - 339