STRONG CONVERGENCE RESULTS FOR VARIATIONAL INEQUALITY AND EQUILIBRIUM PROBLEM IN HADAMARD SPACES

被引:0
作者
Ugwunnadi, G. C. [1 ]
Okeke, C. C. [1 ]
Khan, A. R. [2 ]
Jolaoso, L. O. [3 ]
机构
[1] Univ Eswatini, Dept Math, Private Bag 4, Kwaluseni, Eswatini
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2023年 / 47卷 / 06期
关键词
Variational inequality problem; inverse strongly monotone operator; viscosity iteration; equilibruim problem; demimetric mapping; Hadamard space; PROXIMAL POINT ALGORITHM; FIXED-POINTS; NONEXPANSIVE-MAPPINGS; CONVEX-FUNCTIONS; THEOREMS;
D O I
10.46793/KgJMat2306.825U
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to introduce and study a viscosity type algorithm in a Hadamard space which comprises of a demimetric mapping, a finite family of inverse strongly monotone mappings and an equilibrium problem for a bifunction. Strong convergence of the proposed algorithm to a common solution of variational inequality problem, fixed point problem and equilibrium problem is established in Hadamard spaces. Nontrivial Applications and numerical examples were given. Our results compliment some results in the literature.
引用
收藏
页码:825 / 845
页数:21
相关论文
共 50 条
[41]   Convergence analysis of the extragradient method for equilibrium problems in Hadamard spaces [J].
Iusem, Alfredo N. ;
Mohebbi, Vahid .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)
[43]   Strong convergence theorems for the split equality variational inclusion problem and fixed point problem in Hilbert spaces [J].
Guo, Haili ;
He, Huimin ;
Chen, Rudong .
FIXED POINT THEORY AND APPLICATIONS, 2015, :1-18
[44]   On a Viscosity Iterative Method for Solving Variational Inequality Problems in Hadamard Spaces [J].
Aremu, Kazeem Olalekan ;
Izuchukwu, Chinedu ;
Abass, Hammed Anuolwupo ;
Mewomo, Oluwatosin Temitope .
AXIOMS, 2020, 9 (04) :1-14
[45]   Existence results for vector variational inequality problems on Hadamard manifolds [J].
Chen, Sheng-lan .
OPTIMIZATION LETTERS, 2020, 14 (08) :2395-2411
[46]   Adaptive extraproximal algorithm for the equilibrium problem in the hadamard spaces [J].
Vedel Ya.I. ;
Golubeva E.N. ;
Semenov V.V. ;
Chabak L.M. .
Journal of Automation and Information Sciences, 2020, 52 (08) :46-58
[48]   Algorithms with strong convergence for a system of nonlinear variational inequalities in Banach spaces [J].
Yao, Yonghong ;
Liou, Yeong-Cheng ;
Kang, Shin Min ;
Yu, Youli .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6024-6034
[49]   CONVERGENCE THEOREMS OF COMMON SOLUTIONS FOR FIXED POINT, VARIATIONAL INEQUALITY AND EQUILIBRIUM PROBLEMS [J].
Shahzad, Naseer ;
Zegeye, Habtu .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2019, 3 (02) :189-203
[50]   WEAK AND STRONG CONVERGENCE THEOREMS FOR STRICTLY PSEUDONONSPREADING MAPPINGS AND EQUILIBRIUM PROBLEM IN HILBERT SPACES [J].
Butsan, Thanwarat .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (02) :311-320