STRONG CONVERGENCE RESULTS FOR VARIATIONAL INEQUALITY AND EQUILIBRIUM PROBLEM IN HADAMARD SPACES

被引:0
作者
Ugwunnadi, G. C. [1 ]
Okeke, C. C. [1 ]
Khan, A. R. [2 ]
Jolaoso, L. O. [3 ]
机构
[1] Univ Eswatini, Dept Math, Private Bag 4, Kwaluseni, Eswatini
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2023年 / 47卷 / 06期
关键词
Variational inequality problem; inverse strongly monotone operator; viscosity iteration; equilibruim problem; demimetric mapping; Hadamard space; PROXIMAL POINT ALGORITHM; FIXED-POINTS; NONEXPANSIVE-MAPPINGS; CONVEX-FUNCTIONS; THEOREMS;
D O I
10.46793/KgJMat2306.825U
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to introduce and study a viscosity type algorithm in a Hadamard space which comprises of a demimetric mapping, a finite family of inverse strongly monotone mappings and an equilibrium problem for a bifunction. Strong convergence of the proposed algorithm to a common solution of variational inequality problem, fixed point problem and equilibrium problem is established in Hadamard spaces. Nontrivial Applications and numerical examples were given. Our results compliment some results in the literature.
引用
收藏
页码:825 / 845
页数:21
相关论文
共 50 条
[31]   A variational inequality in complete CAT(0) spaces [J].
Khatibzadeh, Hadi ;
Ranjbar, Sajad .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (03) :557-574
[32]   New strong convergence theorem of the inertial projection and contraction method for variational inequality problems [J].
Thong, Duong Viet ;
Vinh, Nguyen The ;
Cho, Yeol Je .
NUMERICAL ALGORITHMS, 2020, 84 (01) :285-305
[33]   Weak Convergence Theorem by an Extragradient Method for Variational Inequality, Equilibrium and Fixed Point Problems [J].
Jaiboon, C. ;
Kumam, P. ;
Humphries, U. W. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2009, 32 (02) :173-185
[34]   Strong Convergence Results for Continuous Hemicontractive Mappings in Hilbert Spaces [J].
Akuchu, B. G. ;
Okoro, A. O. ;
Nwigbo, K. T. ;
Chukwuyere, P. C. .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (01) :113-120
[35]   Strong convergence of an iterative algorithm for variational inequalities in Banach spaces [J].
Yao, Yonghong ;
Maruster, Stefan .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :325-329
[36]   Convergence analysis for fixed point problem of asymptotically nonexpansive mappings and variational inequality problem in Hilbert spaces [J].
Dong, Qiao-Li ;
Cai, Gang .
OPTIMIZATION, 2021, 70 (5-6) :1171-1193
[37]   Weak and strong convergence theorems for variational inequality problems [J].
Duong Viet Thong ;
Dang Van Hieu .
NUMERICAL ALGORITHMS, 2018, 78 (04) :1045-1060
[38]   Weak and strong convergence theorems for variational inequality problems [J].
Duong Viet Thong ;
Dang Van Hieu .
Numerical Algorithms, 2018, 78 :1045-1060
[39]   Convergence Theorem for Variational Inequality in Hilbert Spaces with Applications [J].
Yu, Zenn-Tsun ;
Chuang, Chih Sheng ;
Lin, Lai-Jiu .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (08) :865-893
[40]   Strong convergence theorems and a projection method using a balanced mapping in Hadamard spaces [J].
Kimura, Yasunori ;
Ogihara, Tomoya .
FILOMAT, 2023, 37 (27) :9287-9297