STRONG CONVERGENCE RESULTS FOR VARIATIONAL INEQUALITY AND EQUILIBRIUM PROBLEM IN HADAMARD SPACES

被引:0
作者
Ugwunnadi, G. C. [1 ]
Okeke, C. C. [1 ]
Khan, A. R. [2 ]
Jolaoso, L. O. [3 ]
机构
[1] Univ Eswatini, Dept Math, Private Bag 4, Kwaluseni, Eswatini
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2023年 / 47卷 / 06期
关键词
Variational inequality problem; inverse strongly monotone operator; viscosity iteration; equilibruim problem; demimetric mapping; Hadamard space; PROXIMAL POINT ALGORITHM; FIXED-POINTS; NONEXPANSIVE-MAPPINGS; CONVEX-FUNCTIONS; THEOREMS;
D O I
10.46793/KgJMat2306.825U
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to introduce and study a viscosity type algorithm in a Hadamard space which comprises of a demimetric mapping, a finite family of inverse strongly monotone mappings and an equilibrium problem for a bifunction. Strong convergence of the proposed algorithm to a common solution of variational inequality problem, fixed point problem and equilibrium problem is established in Hadamard spaces. Nontrivial Applications and numerical examples were given. Our results compliment some results in the literature.
引用
收藏
页码:825 / 845
页数:21
相关论文
共 50 条
[21]   Convergence of a Two-Stage Proximal Algorithm for the Equilibrium Problem in Hadamard Spaces [J].
Vedel, Ya. I. ;
Sandrakov, G. V. ;
Semenov, V. V. ;
Chabak, L. M. .
CYBERNETICS AND SYSTEMS ANALYSIS, 2020, 56 (05) :784-792
[22]   Convergence of a Two-Stage Proximal Algorithm for the Equilibrium Problem in Hadamard Spaces [J].
Ya. I. Vedel ;
G. V. Sandrakov ;
V. V. Semenov ;
L. M. Chabak .
Cybernetics and Systems Analysis, 2020, 56 :784-792
[23]   Convergence Theorems for Nonspreading Mappings and Equilibrium Problems in Hadamard Spaces [J].
Afkhamitaba, Davood ;
Dehghan, Hossein .
FILOMAT, 2020, 34 (06) :1863-1874
[24]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845
[25]   Strong convergence theorems for fixed point problems, variational inequality problems, and equilibrium problems [J].
Yao, Zhangsong ;
Liou, Yeong-Cheng ;
Zhu, Li-Jun ;
Lo, Ching-Hua ;
Wu, Chen-Chang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[26]   Strong convergence theorem by a new hybrid method for equilibrium problems and variational inequality problems [J].
Li, HongYu ;
Su, YongFu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :847-855
[27]   Strong and weak convergence theorems for general mixed equilibrium problems and variational inequality problems and fixed point problems in Hilbert spaces [J].
Cai, Gang ;
Bu, Shangquan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 247 :34-52
[28]   Strong Convergence Theorems for Variational Inequality Problems and Fixed Point Problems in Banach Spaces [J].
Cai, Gang ;
Bu, Shangquan .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (02) :525-540
[29]   Strong convergence theorems for the general split variational inclusion problem in Hilbert spaces [J].
Chang, Shih-sen ;
Wang, Lin .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[30]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323