UNIQUENESS OF WEAK SOLUTIONS TO THE BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION

被引:0
作者
Ji, Ruihong [1 ]
Li, Dan [2 ]
Wu, Jiahong [3 ]
机构
[1] Chengdu Univ Technol, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[3] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
中国国家自然科学基金;
关键词
Boussinesq equations; Littlewood-Paley; weak solution; uniqueness;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the existence and uniqueness of weak solutions to the dsion (- increment )beta . The aim is at the uniqueness of weak solutions in the weakest possible inhomogeneous Besov spaces. We establish the local existence and uniqueness in the functional setting composing the bilinear term into different frequencies, we are able to obtain a suitable upper bound on the bilinear term, which allows us to close the estimates in the aforementioned Besov spaces.
引用
收藏
页码:1531 / 1548
页数:18
相关论文
共 35 条
[31]   On the uniqueness for the 2D MHD equations without magnetic diffusion [J].
Wan, Renhui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 :32-40
[32]   New upper bounds and reduced dynamical modeling for Rayleigh-Benard convection in a fluid saturated porous layer [J].
Wen, Baole ;
Dianati, Navid ;
Lunasin, Evelyn ;
Chini, Gregory P. ;
Doering, Charles R. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (05) :2191-2199
[33]   Internal heating driven convection at infinite Prandtl number [J].
Whitehead, Jared P. ;
Doering, Charles R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
[34]   REGULARITY RESULTS FOR THE 2D BOUSSINESQ EQUATIONS WITH CRITICAL OR SUPERCRITICAL DISSIPATION [J].
Wu, Jiahong ;
Xu, Xiaojing ;
Xue, Liutang ;
Ye, Zhuan .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) :1963-1997
[35]   Global regularity of solutions of 2D Boussinesq equations with fractional diffusion [J].
Xu, Xiaojing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :677-681