UNIQUENESS OF WEAK SOLUTIONS TO THE BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION

被引:0
作者
Ji, Ruihong [1 ]
Li, Dan [2 ]
Wu, Jiahong [3 ]
机构
[1] Chengdu Univ Technol, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[3] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
中国国家自然科学基金;
关键词
Boussinesq equations; Littlewood-Paley; weak solution; uniqueness;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the existence and uniqueness of weak solutions to the dsion (- increment )beta . The aim is at the uniqueness of weak solutions in the weakest possible inhomogeneous Besov spaces. We establish the local existence and uniqueness in the functional setting composing the bilinear term into different frequencies, we are able to obtain a suitable upper bound on the bilinear term, which allows us to close the estimates in the aforementioned Besov spaces.
引用
收藏
页码:1531 / 1548
页数:18
相关论文
共 35 条
[1]   Small global solutions to the damped two-dimensional Boussinesq equations [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong ;
Xu, Xiaojing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3594-3613
[2]   Global regularity results for the 2D Boussinesq equations with vertical dissipation [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) :1637-1655
[3]   The 2D Boussinesq equations with vertical viscosity and vertical diffusivity [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) :1078-1088
[4]  
Bergh J., 1976, Interpolation spaces. An introduction
[5]   Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation [J].
Cao, Chongsheng ;
Wu, Jiahong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (03) :985-1004
[6]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[7]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[8]   Local existence for the non-resistive MHD equations in Besov spaces [J].
Chemin, Jean-Yves ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ADVANCES IN MATHEMATICS, 2016, 286 :1-31
[9]   Infinite Prandtl number convection [J].
Constantin, P ;
Doering, CR .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :159-172
[10]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533