Decision-making for Connected and Automated Vehicles in Chanllenging Traffic Conditions Using Imitation and Deep Reinforcement Learning

被引:3
|
作者
Hu, Jinchao [1 ]
Li, Xu [1 ]
Hu, Weiming [1 ]
Xu, Qimin [1 ]
Hu, Yue [1 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Peoples R China
关键词
Connected and automated vehicles (CAVs); Traffic safety; Decision-making; Imitation learning; Deep reinforcement learning;
D O I
10.1007/s12239-023-0128-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Decision-making is the "brain" of connected and automated vehicles (CAVs) and is vitally critical to the safety of CAVs. The most of driving data used to train the decision-making algorithms is collected in general traffic conditions. Existing decision-making methods are difficult to guarantee safety in challenging traffic conditions, namely severe congestion and accident ahead. In this context, a semi-supervised decision-making algorithm is proposed to improve the safety of CAVs in challenging traffic conditions. To be specific, we proposed the expert-generative adversarial imitation learning (E-GAIL) that integrates imitation learning and deep reinforcement learning. The proposed E-GAIL is deployed in roadside unit (RSU). In the first stage, the decision-making knowledge of the expert is imitated using the real-world data collected in general traffic conditions. In the second stage, the generator of E-GAIL is further reinforced and achieves self-learn decision-making in the simulator with challenging traffic conditions. The E-GAIL is tested in general and challenging traffic conditions. By comparing the evaluation metrics of time to collision (TTC), deceleration to avoid a crash (DRAC), space gap (SGAP) and time gap (TGAP), the E-GAIL greatly outperforms the state-of-the-art decision-making algorithms. Experimental results show that the E-GAIL not only make-decision for CAVs in general traffic conditions but also successfully enhances the safety of CAVs in challenging traffic conditions.
引用
收藏
页码:1589 / 1602
页数:14
相关论文
共 50 条
  • [31] A DECISION-MAKING METHOD FOR AUTONOMOUS VEHICLES BASED ON SIMULATION AND REINFORCEMENT LEARNING
    Zheng, Rui
    Liu, Chunming
    Guo, Qi
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 362 - 369
  • [32] Reinforcement Learning Decision-Making for Autonomous Vehicles Based on Semantic Segmentation
    Gao, Jianping
    Liu, Ningbo
    Li, Haotian
    Li, Zhe
    Xie, Chengwei
    Gou, Yangyang
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [33] A deep learning lane-changing decision framework with wide spatiotemporal conditions for connected and automated vehicles
    Ma, Ke
    Li, Xiaopeng
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 4036 - 4041
  • [34] Decision-making of autonomous vehicles in interactions with jaywalkers: A risk-aware deep reinforcement learning approach
    Zhang, Ziqian
    Li, Haojie
    Chen, Tiantian
    Sze, N. N.
    Yang, Wenzhang
    Zhang, Yihao
    Ren, Gang
    ACCIDENT ANALYSIS AND PREVENTION, 2025, 210
  • [35] CoTV: Cooperative Control for Traffic Light Signals and Connected Autonomous Vehicles Using Deep Reinforcement Learning
    Guo, Jiaying
    Cheng, Long
    Wang, Shen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 10501 - 10512
  • [36] CoTV: Cooperative Control for Traffic Light Signals and Connected Autonomous Vehicles Using Deep Reinforcement Learning
    Guo, Jiaying
    Cheng, Long
    Wang, Shen
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 3155 - 3155
  • [37] Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach
    Liu, Chunyu
    Sheng, Zihao
    Chen, Sikai
    Shi, Haotian
    Ran, Bin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 629
  • [38] A synthesis of automated planning and reinforcement learning for efficient, robust decision-making
    Leonetti, Matteo
    Iocchi, Luca
    Stone, Peter
    ARTIFICIAL INTELLIGENCE, 2016, 241 : 103 - 130
  • [39] Decision-making with Triple Density Awareness for Autonomous Driving using Deep Reinforcement Learning
    Zhang, Shuwei
    Wu, Yutian
    Ogai, Harutoshi
    Tateno, Shigeyuki
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [40] Autonomous Driving Systems for Decision-Making Under Uncertainty Using Deep Reinforcement Learning
    Haklidir, Mehmet
    Temeltas, Hakan
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,