Decision-making for Connected and Automated Vehicles in Chanllenging Traffic Conditions Using Imitation and Deep Reinforcement Learning

被引:3
|
作者
Hu, Jinchao [1 ]
Li, Xu [1 ]
Hu, Weiming [1 ]
Xu, Qimin [1 ]
Hu, Yue [1 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Peoples R China
关键词
Connected and automated vehicles (CAVs); Traffic safety; Decision-making; Imitation learning; Deep reinforcement learning;
D O I
10.1007/s12239-023-0128-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Decision-making is the "brain" of connected and automated vehicles (CAVs) and is vitally critical to the safety of CAVs. The most of driving data used to train the decision-making algorithms is collected in general traffic conditions. Existing decision-making methods are difficult to guarantee safety in challenging traffic conditions, namely severe congestion and accident ahead. In this context, a semi-supervised decision-making algorithm is proposed to improve the safety of CAVs in challenging traffic conditions. To be specific, we proposed the expert-generative adversarial imitation learning (E-GAIL) that integrates imitation learning and deep reinforcement learning. The proposed E-GAIL is deployed in roadside unit (RSU). In the first stage, the decision-making knowledge of the expert is imitated using the real-world data collected in general traffic conditions. In the second stage, the generator of E-GAIL is further reinforced and achieves self-learn decision-making in the simulator with challenging traffic conditions. The E-GAIL is tested in general and challenging traffic conditions. By comparing the evaluation metrics of time to collision (TTC), deceleration to avoid a crash (DRAC), space gap (SGAP) and time gap (TGAP), the E-GAIL greatly outperforms the state-of-the-art decision-making algorithms. Experimental results show that the E-GAIL not only make-decision for CAVs in general traffic conditions but also successfully enhances the safety of CAVs in challenging traffic conditions.
引用
收藏
页码:1589 / 1602
页数:14
相关论文
共 50 条
  • [1] Decision-making for Connected and Automated Vehicles in Chanllenging Traffic Conditions Using Imitation and Deep Reinforcement Learning
    Jinchao Hu
    Xu Li
    Weiming Hu
    Qimin Xu
    Yue Hu
    International Journal of Automotive Technology, 2023, 24 : 1589 - 1602
  • [2] Decision-Making System for Lane Change Using Deep Reinforcement Learning in Connected and Automated Driving
    An, HongIl
    Jung, Jae-il
    ELECTRONICS, 2019, 8 (05):
  • [3] Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement Learning
    Liao, Jiangdong
    Liu, Teng
    Tang, Xiaolin
    Mu, Xingyu
    Huang, Bing
    Cao, Dongpu
    IEEE ACCESS, 2020, 8 (08): : 177804 - 177814
  • [4] A Comparative Analysis of Deep Reinforcement Learning-Enabled Freeway Decision-Making for Automated Vehicles
    Liu, Teng
    Yang, Yuyou
    Xiao, Wenxuan
    Tang, Xiaolin
    Yin, Mingzhu
    IEEE ACCESS, 2024, 12 : 24090 - 24103
  • [5] A Comprehensive Driving Decision-Making Methodology Based on Deep Reinforcement Learning for Automated Commercial Vehicles
    Hu, Weiming
    Li, Xu
    Hu, Jinchao
    Liu, Yan
    Zhou, Jinying
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (06) : 1469 - 1483
  • [6] Personalized Decision-making and Control for Automated Vehicles based on Generative Adversarial Imitation Learning
    Tang, Xinyue
    Yuan, Kang
    Li, Shangwen
    Yang, Shuo
    Zhou, Zewei
    Huang, Yanjun
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 4806 - 4812
  • [7] Robust Multiagent Reinforcement Learning toward Coordinated Decision-Making of Automated Vehicles
    He, Xiangkun
    Chen, Hao
    Lv, Chen
    SAE INTERNATIONAL JOURNAL OF VEHICLE DYNAMICS STABILITY AND NVH, 2023, 7 (04): : 475 - 488
  • [8] Autonomous Vehicles' Decision-Making Behavior in Complex Driving Environments Using Deep Reinforcement Learning
    Qi, Xiao
    Ye, Yingjun
    Sun, Jian
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5853 - 5864
  • [9] Decision-Making in Fallback Scenarios for Autonomous Vehicles: Deep Reinforcement Learning Approach
    Lee, Cheonghwa
    An, Dawn
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [10] SPACECRAFT DECISION-MAKING AUTONOMY USING DEEP REINFORCEMENT LEARNING
    Harris, Andrew
    Teil, Thibaud
    Schaub, Hanspeter
    SPACEFLIGHT MECHANICS 2019, VOL 168, PTS I-IV, 2019, 168 : 1757 - 1775