High average power ultrafast laser technologies for driving future advanced accelerators

被引:10
作者
Kiani, Leily [1 ]
Zhou, Tong [2 ]
Bahk, Seung-Whan [3 ]
Bromage, Jake [3 ]
Bruhwiler, David [4 ]
Campbell, E. Michael [3 ]
Chang, Zenghu [4 ]
Chowdhury, Enam [5 ]
Downer, Michael [6 ]
Du, Qiang [2 ]
Esarey, Eric [2 ]
Galvanauskas, Almantas [7 ]
Galvin, Thomas [1 ]
Hafner, Constantin [8 ]
Hoffmann, Dieter [8 ]
Joshi, Chan [9 ]
Kanskar, Manoj [10 ]
Lu, Wei [11 ]
Menoni, Carmen [12 ]
Messerly, Michael [1 ]
Mirov, Sergey B. [13 ]
Palmer, Mark [14 ]
Pogorelsky, Igor [14 ]
Polyanskiy, Mikhail [14 ]
Power, Erik [3 ]
Reagan, Brendan [1 ]
Rocca, Jorge [12 ]
Rothenberg, Joshua [15 ]
Schmidt, Bruno E. [16 ]
Sistrunk, Emily [1 ]
Spinka, Thomas [1 ]
Tochitsky, Sergei [9 ]
Vafaei-Najafabadi, Navid [17 ]
van Tilborg, Jeroen [2 ]
Wilcox, Russell [2 ]
Zuegel, Jonathan [3 ]
Geddes, Cameron [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Univ Rochester, Lab Laser Energet, Rochester, NY USA
[4] Univ Cent Florida, Orlando, FL USA
[5] Ohio State Univ, Columbus, OH USA
[6] Univ Texas Austin, Austin, TX USA
[7] Univ Michigan, Ann Arbor, MI USA
[8] Fraunhofer Inst Laser Technol, Aachen, Germany
[9] Univ Calif Los Angeles, Los Angeles, CA USA
[10] NLight Inc, Vancouver, WA USA
[11] Raytum Photon LLC, Sterling, VA USA
[12] Colorado State Univ, Ft Collins, CO USA
[13] Univ Alabama Birmingham, Birmingham, AL USA
[14] Brookhaven Natl Lab, Upton, NY USA
[15] Northrop Grumman, Redondo Beach, CA USA
[16] Few Cycle Inc, Varennes, PQ, Canada
[17] SUNY Stony Brook, Stony Brook, NY USA
关键词
Lasers; Accelerator Subsystems and Technologies; Wake-field acceleration (laser-driven; electron-driven); COHERENT PULSE STACKING; DAMAGE THRESHOLD; FIBER; PICOSECOND; AMPLIFICATION; ABLATION; BEAMS; KHZ; STABILIZATION; COMBINATION;
D O I
10.1088/1748-0221/18/08/T08006
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Large scale laser facilities are needed to advance the energy frontier in high energy physics and accelerator physics. Laser plasma accelerators are core to advanced accelerator concepts aimed at reaching TeV electron electron colliders. In these facilities, intense laser pulses drive plasmas and are used to accelerate electrons to high energies in remarkably short distances. A laser plasma accelerator could in principle reach high energies with an accelerating length that is 1000 times shorter than in conventional RF based accelerators. Notionally, laser driven particle beam energies could scale beyond state of the art conventional accelerators. LPAs have produced multi GeV electron beams in about 20 cm with relative energy spread of about 2 percent, supported by highly developed laser technology. This validates key elements of the US DOE strategy for such accelerators to enable future colliders but extending best results to date to a TeV collider will require lasers with higher average power. While the per pulse energies envisioned for laser driven colliders are achievable with current lasers, low laser repetition rates limit potential collider luminosity. Applications will require rates of kHz to tens of kHz at Joules of energy and high efficiency, and a collider would require about 100 such stages, a leap from current Hz class LPAs. This represents a challenging 1000 fold increase in laser repetition rates beyond current state of the art. This whitepaper describes current research and outlook for candidate laser systems as well as the accompanying broadband and high damage threshold optics needed for driving future advanced accelerators.
引用
收藏
页数:25
相关论文
共 120 条
[51]   Laser-driven plasma-wave electron accelerators [J].
Leemans, Wirn ;
Esarey, Eric .
PHYSICS TODAY, 2009, 62 (03) :44-49
[52]   High-power few-cycle Cr:ZnSe mid-infrared source for attosecond soft x-ray physics [J].
Leshchenko, Vyacheslav E. ;
Talbert, Bradford K. ;
Lai, Yu Hang ;
Li, Sha ;
Tang, Yaguo ;
Hageman, Stephen J. ;
Smith, Greg ;
Agostini, Pierre ;
DiMauro, Louis F. ;
Blaga, Cosmin, I .
OPTICA, 2020, 7 (08) :981-988
[53]   Practicability of protontherapy using compact laser systems [J].
Malka, V ;
Fritzler, S ;
Lefebvre, E ;
d'Humières, E ;
Ferrand, R ;
Grillon, G ;
Albaret, C ;
Meyroneinc, S ;
Chambaret, JP ;
Antonetti, A ;
Hulin, D .
MEDICAL PHYSICS, 2004, 31 (06) :1587-1592
[54]   Monoenergetic beams of relativistic electrons from intense laser-plasma interactions [J].
Mangles, SPD ;
Murphy, CD ;
Najmudin, Z ;
Thomas, AGR ;
Collier, JL ;
Dangor, AE ;
Divall, EJ ;
Foster, PS ;
Gallacher, JG ;
Hooker, CJ ;
Jaroszynski, DA ;
Langley, AJ ;
Mori, WB ;
Norreys, PA ;
Tsung, FS ;
Viskup, R ;
Walton, BR ;
Krushelnick, K .
NATURE, 2004, 431 (7008) :535-538
[55]   Poly- Versus Mono-Energetic Dual-Spectrum Non-Intrusive Inspection of Cargo Containers [J].
Martz, Harry E., Jr. ;
Glenn, Steven M. ;
Smith, Jerel A. ;
Divin, Charles J. ;
Azevedo, Stephen G. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (07) :1709-1718
[56]   On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses -: art. no. 051107 [J].
Mero, M ;
Clapp, B ;
Jasapara, JC ;
Rudolph, W ;
Ristau, D ;
Starke, K ;
Krüger, J ;
Martin, S ;
Kautek, W .
OPTICAL ENGINEERING, 2005, 44 (05) :1-7
[57]   Scaling laws of femtosecond laser pulse induced breakdown in oxide films [J].
Mero, M ;
Liu, J ;
Rudolph, W ;
Ristau, D ;
Starke, K .
PHYSICAL REVIEW B, 2005, 71 (11)
[58]   Optical Guiding in Meter-Scale Plasma Waveguides [J].
Miao, B. ;
Feder, L. ;
Shrock, J. E. ;
Goffin, A. ;
Milchberg, H. M. .
PHYSICAL REVIEW LETTERS, 2020, 125 (07)
[59]   Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides [J].
Mirov, Sergey B. ;
Moskalev, Igor S. ;
Vasilyev, Sergey ;
Smolski, Viktor ;
Fedorov, Vladimir V. ;
Martyshkin, Dmitry ;
Peppers, Jeremy ;
Mirov, Mike ;
Dergachev, Alex ;
Gapontsev, Valentin .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (05)
[60]   140 W Cr:ZnSe laser system [J].
Moskalev, Igor ;
Mirov, Sergey ;
Mirov, Mike ;
Vasilyev, Sergey ;
Smolski, Viktor ;
Zakrevskiy, Andrey ;
Gapontsev, Valentin .
OPTICS EXPRESS, 2016, 24 (18) :21090-21104