Modeling placental development and disease using human pluripotent stem cells

被引:5
|
作者
Morey, Robert [1 ,2 ]
Bui, Tony [1 ,2 ]
Fisch, Kathleen M. [3 ]
Horii, Mariko [1 ,2 ,4 ]
机构
[1] Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Sanford Consortium Regenerat Med, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Obstet Gynecol & Reprod Sci, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Pathol, Sanford Consortium Regenerat Med, 9500 Gilman Dr,MC 0695, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
Human pluripotent stem cells; Trophoblast stem cells; Trophoblast organoid; Disease modeling; HUMAN TROPHOBLAST; HLA-G; NULL MUTATION; DIFFERENTIATION; PREECLAMPSIA; ESTABLISHMENT; DERIVATION; EXPRESSION; PREGNANCY; PROLIFERATION;
D O I
10.1016/j.placenta.2022.10.011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Our current knowledge of the cellular and molecular mechanisms of placental epithelial cells, trophoblast, primarily came from the use of mouse trophoblast stem cells and tumor-derived or immortalized human trophoblast cell lines. This was mainly due to the difficulties in maintaining primary trophoblast in culture and establishing human trophoblast stem cell (hTSC) lines. However, in-depth characterization of these cellular models and in vivo human trophoblast have revealed significant discrepancies. For the past two decades, multiple groups have shown that human pluripotent stem cells (hPSCs) can be differentiated into trophoblast, and thus could be used as a model for normal and disease trophoblast differentiation. During this time, trophoblast differentiation protocols have evolved, enabling researchers to study cellular characteristics at trophectoderm (TE), trophoblast stem cells (TSC), syncytiotrophoblast (STB), and extravillous trophoblast (EVT) stages. Recently, several groups reported methods to derive hTSC from pre-implantation blastocyst or early gestation placenta, and trophoblast organoids from early gestation placenta, drastically changing the landscape of trophoblast research. These culture conditions have been rapidly applied to generate hPSC-derived TSC and trophoblast organoids. As a result of these technological advancements, the field's capacity to better understand trophoblast differentiation and their involvement in pregnancy related disease has greatly expanded. Here, we present in vitro models of human trophoblast differentiation, describing both primary and hPSC-derived TSC, maintained as monolayers and 3-dimensional trophoblast organoids, as a tool to study early placental development and disease in multiple settings.
引用
收藏
页码:18 / 25
页数:8
相关论文
共 50 条
  • [31] Development of substrates for the culture of human pluripotent stem cells
    Kawase, Eihachiro
    Nakatsuji, Norio
    BIOMATERIALS SCIENCE, 2023, 11 (09) : 2974 - 2987
  • [32] Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells
    Xiao-hong Xu
    Zhong Zhong
    Acta Pharmacologica Sinica, 2013, 34 : 755 - 764
  • [33] Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells
    Xu, Xiao-hong
    Zhong, Zhong
    ACTA PHARMACOLOGICA SINICA, 2013, 34 (06) : 755 - 764
  • [34] Derivation and propagation of spermatogonial stem cells from human pluripotent cells
    Xu, Huiming
    Yang, Mengbo
    Tian, Ruhui
    Wang, Yonghui
    Liu, Linhong
    Zhu, Zijue
    Yang, Shi
    Yuan, Qingqing
    Niu, Minghui
    Yao, Chencheng
    Zhi, Erlei
    Li, Peng
    Zhou, Chenhao
    He, Zuping
    Li, Zheng
    Gao, Wei-Qiang
    STEM CELL RESEARCH & THERAPY, 2020, 11 (01)
  • [35] Derivation of Human Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling
    Narsinh, Kamileh
    Narsinh, Kazim H.
    Wu, Joseph C.
    CIRCULATION RESEARCH, 2011, 108 (09) : 1146 - 1156
  • [36] Human Circadian Molecular Oscillation Development Using Induced Pluripotent Stem Cells
    Umemura, Yasuhiro
    Maki, Izumi
    Tsuchiya, Yoshiki
    Koike, Nobuya
    Yagita, Kazuhiro
    JOURNAL OF BIOLOGICAL RHYTHMS, 2019, 34 (05) : 525 - 532
  • [37] Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease
    Horii, Mariko
    Li, Yingchun
    Wakeland, Anna K.
    Pizzo, Donald P.
    Nelson, Katharine K.
    Sabatini, Karen
    Laurent, Louise Chang
    Liu, Ying
    Parast, Mana M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) : E3882 - E3891
  • [38] Modeling human yolk sac hematopoiesis with pluripotent stem cells
    Atkins, Michael H.
    Scarfo, Rebecca
    McGrath, Kathleen E.
    Yang, Donghe
    Palis, James
    Ditadi, Andrea
    Keller, Gordon M.
    JOURNAL OF EXPERIMENTAL MEDICINE, 2021, 219 (03)
  • [39] Disease modeling studies using induced pluripotent stem cells: are we using enough controls?
    Johnson, Adiv A.
    Andrews-Pfannkoch, Cynthia
    Nelson, Timothy J.
    Pulido, Jose S.
    Marmorstein, Alan D.
    REGENERATIVE MEDICINE, 2017, 12 (08) : 899 - 903
  • [40] Modeling Parkinson’s Disease Using Induced Pluripotent Stem Cells
    Blake Byers
    Hsiao-lu Lee
    Renee Reijo Pera
    Current Neurology and Neuroscience Reports, 2012, 12 : 237 - 242