Assessing the Potential Impacts of Climate Change on Current Coastal Ecosystems-A Canadian Case Study

被引:9
|
作者
Dau, Quan Van [1 ,2 ]
Wang, Xiuquan [1 ,2 ]
Shah, Mohammad Aminur Rahman [1 ,2 ]
Kinay, Pelin [1 ,2 ]
Basheer, Sana [1 ,2 ]
机构
[1] Univ Prince Edward Isl, Canadian Ctr Climate Change & Adaptat, St Peters Bay, PE C0A 2A0, Canada
[2] Univ Prince Edward Isl, Sch Climate Change & Adaptat, Charlottetown, PE C1A 4P3, Canada
关键词
ecosystem vulnerability; climate change; coastal flooding; storm surge; remote sensing; machine learning; SUPPORT VECTOR MACHINES; REMOTE-SENSING IMAGERY; STORM-SURGE; LAND-USE; CLASSIFICATION; EXTENT; ISLAND;
D O I
10.3390/rs15194742
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding how climate change affects coastal ecosystems is one of the most important elements in determining vulnerability and resilience for long-term ecosystem management in the face of the increasing risk of coastal hazards (e.g., sea level rise, coastal flooding, and storm surge). This research attempts to undertake a study on the ecosystem-climate nexus in the Canadian province of Prince Edward Island (PEI). Cloud-based remote sensing techniques with Google Earth Engine (GGE) are utilized to identify ecosystem changes over time. In addition, the effects of coastal flooding and storm surge ecosystems under different climate scenarios are examined. The results suggest a reduction in the forest (3%), open water or marsh component (9%), salt water (5%), no open water or marsh component (3%), and salt or brackish marsh (17%) ecosystems from 2013 to 2022. Dune and beach exhibit a non-uniform distribution across the period because of variations in natural processes, with an upward trend ranging from 0% to 11%. Approximately 257 km2 (9.4%) of PEI's ecosystems would be affected by extreme coastal flooding (scenario 4), compared to 142 km2 (5.2%), 155 km2 (5.7%), and 191 km2 (7%) in scenarios 1, 2, and 3, respectively. Under a 4 m storm surge scenario, around 223 km2 (8.2%) of PEI's ecosystems would be flooded, compared to 61 km2 (2.2%), 113 km2 (4.1%), and 168 km2 (6.1%) under 1 m, 2 m, and 3 m scenarios, respectively. The findings from this research would enable policymakers to take necessary actions to sustain ecosystem services in PEI while confronting the impacts of climate change.
引用
收藏
页数:18
相关论文
empty
未找到相关数据