Fractional-order projection of a chaotic system with hidden attractors and its passivity-based synchronization

被引:2
|
作者
Serrano, Fernando E. [1 ]
Munoz-Pacheco, Jesus M. [2 ]
Flores, Marco A. [1 ]
机构
[1] Univ Nacl Autonoma Honduras UNAH, Inst Invest Energia IIE, Tegucigalpa 11101, Honduras
[2] Benemerita Univ Autonoma Puebla BUAP, Fac Elect Sci, Puebla, Mexico
关键词
chaotic system; synchronization; hidden attractor; fractional-order; passivity-based control; chaos; COMPLEX DYNAMICAL NETWORKS; STABILITY; CYCLES; DELAYS;
D O I
10.3389/fams.2023.1267664
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the fractional-order projection of a chaotic system, which delivers a collection of self-excited and hidden chaotic attractors as a function of a single system parameter. Based on an integer-order chaotic system and the proposed transformation, the fractional-order chaotic system obtains when the divergence of integer and fractional vector fields flows in the same direction. Phase portraits, bifurcation diagrams, and Lyapunov exponents validate the chaos generation. Apart from these results, two passivity-based fractional control laws are designed effectively for the integer and fractional-order chaotic systems. In both cases, the synchronization schemes depend on suitable storage functions given by the fractional Lyapunov theory. Several numerical experiments confirm the proposed approach and agree well with the mathematical deductions.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Adaptive synchronization of the fractional-order unified chaotic system
    Zhang Ruo-Xun
    Yang Yang
    Yang Shi-Ping
    ACTA PHYSICA SINICA, 2009, 58 (09) : 6039 - 6044
  • [42] Synchronization of Incommensurate Fractional-Order Chaotic Systems Based on Linear Feedback Control
    Qi, Fei
    Qu, Jianfeng
    Chai, Yi
    Chen, Liping
    Lopes, Antonio M.
    FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [43] Fractional-order quantum game chaotic map and its synchronization with application
    Liu, Zeyu
    Feng, Binshuai
    Lu, Zhengyuan
    Zhou, Yunkang
    CHINESE JOURNAL OF PHYSICS, 2024, 90 : 1015 - 1025
  • [44] Hybrid Projective Synchronization of Fractional-Order Extended Hindmarsh-Rose Neurons with Hidden Attractors
    Shi, Xuerong
    Wang, Zuolei
    AXIOMS, 2023, 12 (02)
  • [45] Synchronization of fractional-order Lu chaotic oscillators for voice encryption
    Garcia-Sepulveda, O.
    Posadas-Castillo, C.
    Cortes-Preciado, A. D.
    Platas-Garza, M. A.
    Garza-Gonzalez, E.
    Sanchez, Allan G. S.
    REVISTA MEXICANA DE FISICA, 2020, 66 (03) : 364 - 371
  • [46] A NOVEL FRACTIONAL-ORDER HYPERCHAOTIC SYSTEM AND ITS SYNCHRONIZATION
    Zhou, Ping
    Zhu, Wei
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2009, 3 (01): : 53 - 61
  • [47] Hidden extreme multistability generated from a fractional-order chaotic system
    Li, X.
    Li, Z.
    INDIAN JOURNAL OF PHYSICS, 2019, 93 (12) : 1601 - 1610
  • [48] Coexistence of infinite attractors in a fractional-order chaotic system with two nonlinear functions and its DSP implementation
    Han, Xintong
    Mou, Jun
    Xiong, Li
    Ma, Chenguang
    Liu, Tianming
    Cao, Yinghong
    INTEGRATION-THE VLSI JOURNAL, 2021, 81 : 43 - 55
  • [49] Hidden attractors in fractional-order discrete maps
    Varshney, Vaibhav
    Kingston, S. Leo
    Srinivasan, Sabarathinam
    Kumarasamy, Suresh
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (10):
  • [50] A new double-wing fractional-order chaotic system and its synchronization by sliding mode
    Wang Bin
    Wu Chao
    Zhu De-Lan
    ACTA PHYSICA SINICA, 2013, 62 (23)