Si-Based High-Entropy Anode for Lithium-Ion Batteries

被引:24
|
作者
Lei, Xincheng [1 ,2 ]
Wang, Yingying [1 ]
Wang, Jiayi [1 ]
Su, Yi [3 ,4 ]
Ji, Pengxiang [1 ,2 ]
Liu, Xiaozhi [1 ]
Guo, Shengnan [1 ]
Wang, Xuefeng [1 ]
Hu, Qingmiao [7 ]
Gu, Lin [5 ,6 ]
Zhang, Yuegang [3 ,4 ]
Yang, Rui [7 ]
Zhou, Gang [7 ]
Su, Dong [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Beijing Natl Ctr Electron Microscopy, Dept Mat Sci & Engn, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Dept Mat Sci & Engn, Lab Adv Mat, Beijing 100084, Peoples R China
[7] Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
high entropy effect; Li ion batteries; mechanical properties; Si anodes; structural integrity; HIGH-CAPACITY; COMPOSITE ANODE; IN-SITU; SILICON; STORAGE; CARBON; NANOPARTICLES; FRACTURE; LAYERS; ALLOY;
D O I
10.1002/smtd.202300754
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Up to now, only a small portion of Si has been utilized in the anode for commercial lithium-ion batteries (LIBs) despite its high energy density. The main challenge of using micron-sized Si anode is the particle crack and pulverization due to the volume expansion during cycling. This work proposes a type of Si-based high-entropy alloy (HEA) materials with high structural stability for the LIB anode. Micron-sized HEA-Si anode can deliver a capacity of 971 mAhg-1 and retains 93.5% of its capacity after 100 cycles. In contrast, the silicon-germanium anode only retains 15% of its capacity after 20 cycles. This study has discovered that including HEA elements in Si-based anode can decrease its anisotropic stress and consequently enhance ductility at discharged state. By utilizing in situ X-ray diffraction and transmission electron microscopy analyses, a high-entropy transition metal doped Lix(Si/Ge) phase is found at lithiated anode, which returns to the pristine HEA phase after delithiation. The reversible lithiation and delithiation process between the HEA phases leads to intrinsic stability during cycling. These findings suggest that incorporating high-entropy modification is a promising approach in designing anode materials toward high-energy density LIBs. High-entropy strategy is applied to Si-based anode materials simply by ball milling Si/Ge with multiple 3d transition metal elements. Benefiting from the high-entropy effect, reversible structure change during cycling is found in the high-entropy system which leads to its cycling stability. Also, transition metal elements inside lithiated particle increase its ductility and thus relieve the stress at discharged state.image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Si-Based Materials as the Anode of Lithium-Ion Batteries
    Tao Zhanliang
    Wang Hongbo
    Chen Jun
    PROGRESS IN CHEMISTRY, 2011, 23 (2-3) : 318 - 327
  • [2] Si-based all-lithium-reactive high-entropy alloy for thin-film lithium-ion battery anode
    Su, Yi
    Lei, Xincheng
    Chen, Wenjie
    Su, Yipeng
    Liu, Haowen
    Ren, Shuaiyang
    Tong, Ruoyu
    Lin, Yitao
    Jiang, Weijing
    Liu, Xiaozhi
    Su, Dong
    Zhang, Yuegang
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [3] Spider silk binder for Si-based anode in lithium-ion batteries
    Choi, DongWoong
    Choy, Kwang Leong
    MATERIALS & DESIGN, 2020, 191 (191)
  • [4] Development of Binder Materials for Si-based Anode in Lithium-ion Batteries
    Yoon, Jihee
    Yoo, Jung-Keun
    COMPOSITES RESEARCH, 2022, 35 (06): : 365 - 370
  • [5] High-entropy oxides: an emerging anode material for lithium-ion batteries
    Zou, Xikun
    Zhang, Yi-Ruo
    Huang, Ze-Ping
    Yue, Kan
    Guo, Zi-Hao
    CHEMICAL COMMUNICATIONS, 2023, 59 (91) : 13535 - 13550
  • [6] Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress
    Li, Yifei
    Li, Qingmeng
    Chai, Jiali
    Wang, Yiting
    Du, Jiakai
    Chen, Zhiyuan
    Rui, Yichuan
    Jiang, Lei
    Tang, Bohejin
    ACS MATERIALS LETTERS, 2023, 5 (11): : 2948 - 2970
  • [7] High-Entropy Electrolytes for Lithium-Ion Batteries
    Wang, Qidi
    Wang, Jianlin
    Heringa, Jouke R.
    Bai, Xuedong
    Wagemaker, Marnix
    ACS ENERGY LETTERS, 2024, 9 (08): : 3796 - 3806
  • [8] In situ dispensing glue to prepare flexible Si-based anode for lithium-ion batteries
    Meng Zhang
    Zhenqiu Wang
    Jin Li
    Ningnian Gou
    Dianping Zhang
    Journal of Solid State Electrochemistry, 2022, 26 : 2723 - 2731
  • [9] In situ dispensing glue to prepare flexible Si-based anode for lithium-ion batteries
    Zhang, Meng
    Wang, Zhenqiu
    Li, Jin
    Gou, Ningnian
    Zhang, Dianping
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (12) : 2723 - 2731
  • [10] Nanostructured Si-Based Anodes for Lithium-Ion Batteries
    Zhu, Xiaoyi
    Yang, Dongjiang
    Li, Jianjiang
    Su, Fabing
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (01) : 15 - 30