Unsafe behaviour detection with the improved YOLOv5 model

被引:0
|
作者
Ying, Li [1 ,2 ]
Lei, Zhao [1 ,2 ]
Geng, Junwei [1 ,2 ]
Hu, Jinhui [1 ,2 ]
Lei, Ma [1 ,2 ]
Zhao, Zilong [3 ]
机构
[1] State Grid Beijing Elect Power Co, Beijing, Peoples R China
[2] Beijing Elect Power Econ & Technol Res Inst CO LTD, Beijing, Peoples R China
[3] Nanjing Artificial Intelligence Res IA AiRiA, Nanjing, Jiangsu, Peoples R China
关键词
learning (artificial intelligence); neural nets; object detection; DEEP CONVOLUTIONAL NETWORKS;
D O I
10.1049/cps2.12070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In industrial environments, workers should wear workwear for safety considerations. For the same reason, smoking is also prohibited. Due to the supervision of monitoring devices, workers have reduced smoking behaviours and started wearing workwear. To meet the requirements for detecting these behaviours in real-time monitoring videos with high speed and accuracy, the authors proposed an improved YOLOv5 model with the Triplet Attention mechanism. This mechanism strengthens the connection between channel and spatial dimensions, focuses the network on important parts, and improves feature extraction. Compared to the original YOLOv5 model, the addition of the mechanism increases the parameters by only 0.04%. The recall rate of the YOLOv5 model is enhanced while its prediction speed is maintained with only a minimal increase in parameters. Experiment results show that, compared to the original model, the improved YOLOv5 has a recall rate of 78.8%, 91%, and 89.3% for detecting smoking behaviour, not wearing helmets, and inappropriate workwear, respectively. This paper introduces the Triplet Attention mechanism based on the YOLOv5 model to detect smoking behaviour and dress code compliance in industrial environments. The mechanism is integrated into the backbone network of YOLOv5 to establish inter-dimensional dependencies and improve the recall rate of the model with only a small increase in parameters.image
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [41] Fish detection method based on improved YOLOv5
    Lei Li
    Guosheng Shi
    Tao Jiang
    Aquaculture International, 2023, 31 : 2513 - 2530
  • [42] Helmet detection method based on improved YOLOv5
    Hou G.
    Chen Q.
    Yang Z.
    Zhang Y.
    Zhang D.
    Li H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 329 - 342
  • [43] Improved Traffic Sign Detection Method for YOLOv5
    Wei, Qiang
    Hu, Xiaoyang
    Zhao, Hongxin
    Computer Engineering and Applications, 2023, 59 (13) : 229 - 237
  • [44] An Improved UAV Detection Method Based on YOLOv5
    Liu, Xinfeng
    Chen, Mengya
    Li, Chenglong
    Tian, Jie
    Zhou, Hao
    Ullah, Inam
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 739 - 750
  • [45] Improved YOLOv5 for Remote Sensing Image Detection
    Liu, Tao
    Ding, Xueyan
    Zhang, Bingbing
    Zhang, Jianxin
    Computer Engineering and Applications, 2023, 59 (10): : 253 - 261
  • [46] Driver Attention Detection Based on Improved YOLOv5
    Wang, Zhongzhou
    Yao, Keming
    Guo, Fuao
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [47] SAB-YOLOv5: An Improved YOLOv5 Model for Permanent Magnetic Ferrite Magnet Rotor Detection
    Yu, Bo
    Li, Qi
    Jiao, Wenhua
    Zhang, Shiyang
    Zhu, Yongjun
    MATHEMATICS, 2024, 12 (07)
  • [48] Hand target detection based on improved YOLOv5
    Xu Z.
    Meng J.
    Fang J.
    International Journal of Wireless and Mobile Computing, 2023, 25 (04) : 353 - 361
  • [49] UAV Target Detection Algorithm with Improved Yolov5
    Chen, Fankai
    Li, Shixin
    Computer Engineering and Applications, 2023, 59 (18): : 218 - 225
  • [50] Improved Fabric Defect Detection Algorithm of YOLOv5
    Ma, Ahui
    Zhu, Shuangwu
    Li, Choudan
    Ma, Xiaotong
    Wang, Shihao
    Computer Engineering and Applications, 2023, 59 (10) : 244 - 252