Unsafe behaviour detection with the improved YOLOv5 model

被引:0
|
作者
Ying, Li [1 ,2 ]
Lei, Zhao [1 ,2 ]
Geng, Junwei [1 ,2 ]
Hu, Jinhui [1 ,2 ]
Lei, Ma [1 ,2 ]
Zhao, Zilong [3 ]
机构
[1] State Grid Beijing Elect Power Co, Beijing, Peoples R China
[2] Beijing Elect Power Econ & Technol Res Inst CO LTD, Beijing, Peoples R China
[3] Nanjing Artificial Intelligence Res IA AiRiA, Nanjing, Jiangsu, Peoples R China
关键词
learning (artificial intelligence); neural nets; object detection; DEEP CONVOLUTIONAL NETWORKS;
D O I
10.1049/cps2.12070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In industrial environments, workers should wear workwear for safety considerations. For the same reason, smoking is also prohibited. Due to the supervision of monitoring devices, workers have reduced smoking behaviours and started wearing workwear. To meet the requirements for detecting these behaviours in real-time monitoring videos with high speed and accuracy, the authors proposed an improved YOLOv5 model with the Triplet Attention mechanism. This mechanism strengthens the connection between channel and spatial dimensions, focuses the network on important parts, and improves feature extraction. Compared to the original YOLOv5 model, the addition of the mechanism increases the parameters by only 0.04%. The recall rate of the YOLOv5 model is enhanced while its prediction speed is maintained with only a minimal increase in parameters. Experiment results show that, compared to the original model, the improved YOLOv5 has a recall rate of 78.8%, 91%, and 89.3% for detecting smoking behaviour, not wearing helmets, and inappropriate workwear, respectively. This paper introduces the Triplet Attention mechanism based on the YOLOv5 model to detect smoking behaviour and dress code compliance in industrial environments. The mechanism is integrated into the backbone network of YOLOv5 to establish inter-dimensional dependencies and improve the recall rate of the model with only a small increase in parameters.image
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [21] Lightweight highland barley detection based on improved YOLOv5
    Cai, Minghui
    Deng, Hui
    Cai, Jianwei
    Guo, Weipeng
    Hu, Zhipeng
    Yu, Dongzheng
    Zhang, Houxi
    PLANT METHODS, 2025, 21 (01)
  • [22] Improved YOLOv5: Efficient Object Detection for Fire Images
    Yu, Dongxing
    Li, Shuchao
    Zhang, Zhongze
    Liu, Xin
    Ding, Wei
    Zhao, Xinyi
    FIRE-SWITZERLAND, 2025, 8 (02):
  • [23] Detection of Rotated Objects Using the Improved YOLOv5 Algorithm
    Tang Wudi
    Xuan, Huang
    Hu, Wei
    Dong, Li
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [24] Object Detection of Individual Mangrove Based on Improved YOLOv5
    Ma Yongkang
    Liu Hua
    Ling Chengxing
    Zhao Feng
    Jiang Yi
    Zhang Yutong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [25] UTD-YOLO: underwater trash detection model based on improved YOLOv5
    Wu, Guanghao
    Ge, Yan
    Yang, Qian
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (06) : 63034
  • [26] Improved Detection and Tracking of Objects Based on a Modified Deep Learning Model (YOLOv5)
    Nife N.I.
    Chtourou M.
    International Journal of Interactive Mobile Technologies, 2023, 17 (21): : 145 - 160
  • [27] Detecting the impurities in tea using an improved YOLOv5 model
    Huang S.
    Liang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (17): : 329 - 336
  • [28] YOLOv5-R: lightweight real-time detection based on improved YOLOv5
    Ren, Jian
    Wang, Zhijie
    Zhang, Yifan
    Liao, Lei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)
  • [29] Fast and precise detection of litchi fruits for yield estimation based on the improved YOLOv5 model
    Wang, Lele
    Zhao, Yingjie
    Xiong, Zhangjun
    Wang, Shizhou
    Li, Yuanhong
    Lan, Yubin
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [30] An Efficient Ship-Detection Algorithm Based on the Improved YOLOv5
    Wang, Jia
    Pan, Qiaoruo
    Lu, Daohua
    Zhang, Yushuang
    ELECTRONICS, 2023, 12 (17)