Automated Lung Ultrasound Pulmonary Disease Quantification Using an Unsupervised Machine Learning Technique for COVID-19

被引:1
|
作者
Sagreiya, Hersh [1 ]
Jacobs, Michael A. [2 ,3 ]
Akhbardeh, Alireza [3 ,4 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[2] Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA
[3] Univ Texas Hlth Sci Ctr, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA
[4] Ambient Digital LLC, Daly City, CA 94014 USA
基金
美国国家卫生研究院;
关键词
ultrasound; machine learning; COVID-19; unsupervised learning; POCUS; computer vision; treatment effectiveness;
D O I
10.3390/diagnostics13162692
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
COVID-19 is an ongoing global health pandemic. Although COVID-19 can be diagnosed with various tests such as PCR, these tests do not establish pulmonary disease burden. Whereas point-of-care lung ultrasound (POCUS) can directly assess the severity of characteristic pulmonary findings of COVID-19, the advantage of using US is that it is inexpensive, portable, and widely available for use in many clinical settings. For automated assessment of pulmonary findings, we have developed an unsupervised learning technique termed the calculated lung ultrasound (CLU) index. The CLU can quantify various types of lung findings, such as A or B lines, consolidations, and pleural effusions, and it uses these findings to calculate a CLU index score, which is a quantitative measure of pulmonary disease burden. This is accomplished using an unsupervised, patient-specific approach that does not require training on a large dataset. The CLU was tested on 52 lung ultrasound examinations from several institutions. CLU demonstrated excellent concordance with radiologist findings in different pulmonary disease states. Given the global nature of COVID-19, the CLU would be useful for sonographers and physicians in resource-strapped areas with limited ultrasound training and diagnostic capacities for more accurate assessment of pulmonary status.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] COVID-19 and Associated Lung Disease Classification Using Deep Learning
    Bhosale, Yogesh H.
    Singh, Priya
    Patnaik, K. Sridhar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 283 - 295
  • [42] Detection of COVID-19 epidemic outbreak using machine learning
    Cho, Giphil
    Park, Jeong Rye
    Choi, Yongin
    Ahn, Hyeonjeong
    Lee, Hyojung
    FRONTIERS IN PUBLIC HEALTH, 2024, 12
  • [43] COVID-19 Outbreak Prediction by Using Machine Learning Algorithms
    Sher, Tahir
    Rehman, Abdul
    Kim, Dongsun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1561 - 1574
  • [44] Forecasting Vaccination Growth for COVID-19 using Machine Learning
    Hartono, Aimee Putri
    Luhur, Callista Roselynn
    Qomariyah, Nunung Nurul
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 356 - 363
  • [45] The feasibility of using machine learning to predict COVID-19 cases
    Chen, Shan
    Ding, Yuanzhao
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 196
  • [46] COVID-19: Recent Advances in Lung Ultrasound
    Pandey, Ramendra Pati
    Mukherjee, Riya
    Chang, Chung-Ming
    CURRENT RESPIRATORY MEDICINE REVIEWS, 2023, 19 (01) : 24 - 28
  • [47] Detection of COVID-19 epidemic outbreak using machine learning
    Cho, Giphil
    Park, Jeong Rye
    Choi, Yongin
    Ahn, Hyeonjeong
    Lee, Hyojung
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [48] Using machine learning probabilities to identify effects of COVID-19
    Ramlall, Vijendra
    Gisladottir, Undina
    Kefeli, Jenna
    Tanaka, Yutaro
    May, Benjamin
    Tatonetti, Nicholas
    PATTERNS, 2023, 4 (12):
  • [49] Machine learning prediction for COVID-19 disease severity at hospital admission
    Raman, Ganesh
    Ashraf, Bilal
    Demir, Yusuf Kemal
    Kershaw, Corey D. D.
    Cheruku, Sreekanth
    Atis, Murat
    Atis, Ahsen
    Atar, Mustafa
    Chen, Weina
    Ibrahim, Ibrahim
    Bat, Taha
    Mete, Mutlu
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [50] Machine learning prediction for COVID-19 disease severity at hospital admission
    Ganesh Raman
    Bilal Ashraf
    Yusuf Kemal Demir
    Corey D. Kershaw
    Sreekanth Cheruku
    Murat Atis
    Ahsen Atis
    Mustafa Atar
    Weina Chen
    Ibrahim Ibrahim
    Taha Bat
    Mutlu Mete
    BMC Medical Informatics and Decision Making, 23