Highly Integrated and Ultra-Compact Rectenna with Wireless Powering for Implantable Vascular Devices

被引:0
|
作者
Zhang, Jungang [1 ]
Wagih, Mahmoud [1 ]
Hoare, Daniel [2 ]
Mirzai, Nosrat [3 ]
Mercer, John [2 ]
Das, Rupam [4 ]
Heidari, Hadi [1 ]
机构
[1] Univ Glasgow, Microelect Lab meLAB, Glasgow, Scotland
[2] Univ Glasgow, BHF Glasgow Cardiovasc Res Ctr, Glasgow, Scotland
[3] Univ Glasgow, Undergrad Med Sch, Glasgow, Scotland
[4] Univ Exeter, Dept Engn, Exeter, England
关键词
implantable rectenna; wireless powering; impedance matching network; rectifying circuit; implantable vascular devices;
D O I
10.1109/NEWCAS57931.2023.10198083
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a highly integrated and ultra-compact implantable rectenna for wirelessly powering implantable vascular devices at 1.4 GHz. The proposed implantable rectenna occupies dimensions of 7 x 7 x 0.635 mm(3) and is encapsulated by a biocompatible polydimethylsiloxane (PDMS) package with an overall size of 8 x 8 x 1.635 mm(3). The miniaturized implantable antenna is achieved by embedding meandered slots on the radiating patch and open-end ground slot. In addition, a single optimized matching inductor is designed for the matching circuit between the antenna and the rectifier. The rectifier is directly integrated into the radiating patch layer of the antenna using a probe feed. The rectifying circuit, utilizing a single-stage voltage doubler topology, efficiently converts radio frequency (RF) power received by the implantable antenna into proper direct current (DC) power to drive the implantable vascular devices. The integrated matching and rectifying circuit are miniaturized to 4.87 x 2.05 x 0.635 mm(3) and exhibits a maximum simulated conversion efficiency of 67.9% with a load resistance of 3 k Omega at an input power of 7.5 dBm.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Ultra-compact hourglass lens for integrated cameras
    Rezaei, Mohsen
    Nia, Iman Hasani
    Bonakdar, Alireza
    Mohseni, Hooman
    CURRENT DEVELOPMENTS IN LENS DESIGN AND OPTICAL ENGINEERING XVI, 2015, 9578
  • [22] Optical powering platform for ultra-small implantable devices
    Tokuda T.
    Yokoshiki Y.
    Takehara H.
    Haruta M.
    Sasagawa K.
    Ohta J.
    IEEJ Transactions on Sensors and Micromachines, 2021, 141 (03) : 63 - 70
  • [23] ULTRA-COMPACT INTEGRATION FOR FULLY-IMPLANTABLE NEURAL MICROSYSTEMS
    Perlin, G. E.
    Wise, K. D.
    IEEE 22ND INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2009), 2009, : 228 - 231
  • [24] A Systematic Method for Efficient Wireless Powering to Implantable Biomedical Devices
    Cao, Xianbo
    Sato, Hiroyasu
    Xu, Kai-Da
    Jiang, Wen
    Gong, Shuxi
    Chen, Qiang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (03) : 2745 - 2757
  • [25] Wireless Powering Efficiency of Deep-Body Implantable Devices
    Soares, Icaro V.
    Gao, Mingxiang
    Cil, Erdem
    Sipus, Zvonimir
    Skrivervik, Anja K.
    Ho, John S.
    Nikolayev, Denys
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (06) : 2680 - 2692
  • [26] Low-Cost Compact Integrated Rectenna for Implantable Medal Receivers
    Muttlak, Saad G.
    Sadeghi, M.
    Ian, Kawa
    Missous, M.
    IEEE SENSORS JOURNAL, 2022, 22 (17) : 16938 - 16944
  • [27] Ultra-compact multistage interferometric devices for optical communication
    Bidnyk, Serge
    Yadav, Ksenia
    Balakrishnan, Ashok
    2022 PHOTONICS NORTH (PN), 2022,
  • [28] Design of a SiC Implantable Rectenna for Wireless In-Vivo Biomedical Devices
    Ababneh, Majdi M.
    Jasim, Mohammed
    Puttananjegowda, Kavyashree
    Perez, Samuel
    Afroz, Shamima
    Thomas, Sylvia
    Yen Kheng Tan
    2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), 2017, : 254 - 257
  • [29] Lab-in-a-tube systems as ultra-compact devices
    Sanchez, S.
    LAB ON A CHIP, 2015, 15 (03) : 610 - 613
  • [30] Simple and Highly Integrated Rectenna for Wireless Power Transmission
    Zhang, Fang
    Lee, Jongchul
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOLS 1 - 4, 2010, : 409 - 412