Nonuniqueness of Solutions to the Euler Equations with Vorticity in a Lorentz Space

被引:8
作者
Brue, Elia [1 ,2 ]
Colombo, Maria [3 ]
机构
[1] Inst Adv Study, 1 Einstein Dr, Princeton, NJ 05840 USA
[2] Bocconi Univ, Milan, Italy
[3] EPFL B, Stn 8, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1007/s00220-023-04816-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the two dimensional Euler equations, a classical result by Yudovich states that solutions are unique in the class of bounded vorticity; it is a celebrated open problem whether this uniqueness result can be extended in other integrability spaces. We prove in this note that such uniqueness theorem fails in the class of vector fields u with uniformly bounded kinetic energy and vorticity in the Lorentz space L-1,L-8.
引用
收藏
页码:1171 / 1192
页数:22
相关论文
共 23 条
[1]  
Albritton D., 2021, INSTABILITY NONUNIQU
[2]  
[Anonymous], 1963, Z. Vycisl. Mat i Mat. Fiz.
[3]   A POSTERIORI ERROR ESTIMATES FOR SELF-SIMILAR SOLUTIONS TO THE EULER EQUATIONS [J].
Bressan, Alberto ;
Shen, Wen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (01) :113-130
[4]  
Buckmaster T., 2021, NONCONSERVATIVE WEAK, V01
[5]   Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1 [J].
Buckmaster, Tristan ;
Colombo, Maria ;
Vicol, Vlad .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (09) :3333-3378
[6]   Nonuniqueness of Weak Solutions to the SQG Equation [J].
Buckmaster, Tristan ;
Shkoller, Steve ;
Vicol, Vlad .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (09) :1809-1874
[7]   Nonuniqueness of weak solutions to the Navier-Stokes equation [J].
Buckmaster, Tristan ;
Vicol, Vlad .
ANNALS OF MATHEMATICS, 2019, 189 (01) :101-144
[8]   Global Ill-Posedness of the Isentropic System of Gas Dynamics [J].
Chiodaroli, Elisabetta ;
De Lellis, Camillo ;
Kreml, Ondrej .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (07) :1157-1190
[9]  
Colombo M., 2021, TYPICALITY RESULTS W, V02
[10]   The Euler equations as a differential inclusion [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1417-1436