Rainbow connectivity of randomly perturbed graphs

被引:2
作者
Balogh, Jozsef [1 ]
Finlay, John [2 ]
Palmer, Cory [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL USA
[2] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
基金
美国国家科学基金会;
关键词
perturbed graph; rainbow connectivity; random edge-coloring; SMOOTHED ANALYSIS; RANDOM EDGES; DENSE;
D O I
10.1002/jgt.23022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we examine the following random graph model: for an arbitrary graph H, with quadratic many edges, construct a graph G by randomly adding m edges to H and randomly coloring the edges of G with r colors. We show that for m a large enough constant and r >= 5, every pair of vertices in G are joined by a rainbow path, that is, G is rainbow connected, with high probability. This confirms a conjecture of Anastos and Frieze, who proved the statement for r >= 7 and resolved the case when r <= 4 and m is a function of n.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 20 条
[1]   RAINBOW HAMILTON CYCLES IN RANDOMLY COLORED RANDOMLY PERTURBED DENSE GRAPHS [J].
Aigner-Horev, Elad ;
Hefetz, Dan .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) :1569-1577
[2]   How many randomly colored edges make a randomly colored dense graph rainbow Hamiltonian or rainbow connected? [J].
Anastos, Michael ;
Frieze, Alan .
JOURNAL OF GRAPH THEORY, 2019, 92 (04) :405-414
[3]   Tilings in Randomly Perturbed Dense Graphs [J].
Balogh, Jozsef ;
Treglown, Andrew ;
Wagner, Adam Zsolt .
COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (02) :159-176
[4]   Universality for bounded degree spanning trees in randomly perturbed graphs [J].
Boettcher, Julia ;
Han, Jie ;
Kohayakawa, Yoshiharu ;
Montgomery, Richard ;
Parczyk, Olaf ;
Person, Yury .
RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (04) :854-864
[5]   Adding random edges to dense graphs [J].
Bohman, T ;
Frieze, A ;
Krivelevich, M ;
Martin, R .
RANDOM STRUCTURES & ALGORITHMS, 2004, 24 (02) :105-117
[6]   How many random edges make a dense graph hamiltonian? [J].
Bohman, T ;
Frieze, A ;
Martin, R .
RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (01) :33-42
[7]   EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS [J].
Bottcher, Julia ;
Montgomery, Richard ;
Parczyk, Olaf ;
Person, Yury .
MATHEMATIKA, 2020, 66 (02) :422-447
[8]  
Caro Y, 2008, ELECTRON J COMB, V15
[9]  
Chartrand G, 2008, MATH BOHEM, V133, P85
[10]   Ramsey properties of randomly perturbed graphs: cliques and cycles [J].
Das, Shagnik ;
Treglown, Andrew .
COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (06) :830-867