FLPK-BiSeNet: Federated Learning Based on Priori Knowledge and Bilateral Segmentation Network for Image Edge Extraction

被引:24
|
作者
Teng, Lin [1 ]
Qiao, Yulong [1 ]
Shafiq, Muhammad [2 ]
Srivastava, Gautam [3 ,4 ,5 ]
Javed, Abdul Rehman [6 ,7 ]
Gadekallu, Thippa Reddy [7 ,8 ,9 ,10 ]
Yin, Shoulin [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150000, Peoples R China
[2] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 510006, Peoples R China
[3] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
[4] China Med Univ, Ctr Interneural Comp, Taichung 404, Taiwan
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[6] Air Univ, Dept Cyber Secur, Islamabad 56300, Pakistan
[7] Lebanese Amer Univ, Dept Elect & Comp Engn, Byblos, Lebanon
[8] Zhongda Grp, Jiaxing 314312, Zhejiang, Peoples R China
[9] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore 632014, India
[10] Jiaxing Univ, Coll Informat Sci & Engn, Jiaxing 314001, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT | 2023年 / 20卷 / 02期
基金
中国国家自然科学基金;
关键词
Federated learning; Deep learning; Electronic mail; Convolution; priori knowledge; image edge extraction; bilateral segmentation network; ALGORITHM;
D O I
10.1109/TNSM.2023.3273991
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning can effectively ensure data security and improve the problem of data islanding. However, the performance of federated learning-based schemes could be better due to the imbalance of image data. Therefore, this paper proposes a federated learning approach based on priori knowledge and a bilateral segmentation network for image edge extraction. First, federated learning can distribute training images for some special complex images due to the small sample and unshared data. Then, the image with similar edge information to the original image is learned to obtain prior knowledge, and the local uniform sparsity method is used to strengthen the detail features and weaken the background features. Based on the bilateral segmentation network, we introduce a dilated pyramid pooling layer and multi-scale feature fusion module to fuse the shallow detailed features in the context path with the deep abstract features obtained through the dilated pyramid pooling. The final result is obtained by fusing the result with prior knowledge and the result with the context path. Finally, we conduct experiments on some public datasets, and the results show that the proposed method greatly improves extraction accuracy compared with the traditional and the most advanced methods.
引用
收藏
页码:1529 / 1542
页数:14
相关论文
共 41 条
  • [21] Image Based Edge Weighted Linked Segmentation Model Using Deep Learning for Detection of Diabetic Retinopathy
    Taranum, Mazar Pasha Lubna
    Rajashekar, Jangam Siddamallaiah
    TRAITEMENT DU SIGNAL, 2022, 39 (01) : 165 - 172
  • [22] ADR-Net: Context extraction network based on M-Net for medical image segmentation
    Ji, Lingyu
    Jiang, Xiaoyan
    Gao, Yongbin
    Fang, Zhijun
    Cai, Qingping
    Wei, Ziran
    MEDICAL PHYSICS, 2020, 47 (09) : 4254 - 4264
  • [23] Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
    Chen, Xing
    Liu, Guizhong
    SENSORS, 2022, 22 (13)
  • [24] DLDP-FL: Dynamic local differential privacy federated learning method based on mesh network edge devices
    Yin, Kangning
    Wu, Bin
    Zhu, Rui
    Xiao, Lin
    Tan, Zhuofu
    He, Guofeng
    Wang, Zhiguo
    Yin, Guangqiang
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
  • [25] A feature extraction method for hydrofoil attached cavitation based on deep learning image semantic segmentation algorithm
    Liu, Yingyuan
    Wang, Yizhi
    An, Kang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] An attention-based dense network model for cardiac image segmentation using learning approaches
    Subaramani, Nandhagopal
    Sasikala, E.
    SOFT COMPUTING, 2024, 28 (01) : 765 - 775
  • [27] An attention-based dense network model for cardiac image segmentation using learning approaches
    Nandhagopal Subaramani
    E. Sasikala
    Soft Computing, 2024, 28 : 765 - 775
  • [28] Federated Semi-Supervised Medical Image Segmentation via Prototype-Based Pseudo-Labeling and Contrastive Learning
    Wu, Huisi
    Zhang, Baiming
    Chen, Cheng
    Qin, Jing
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (02) : 649 - 661
  • [29] A neural network based deep learning approach for efficient segmentation of brain tumor medical image data
    Veeramuthu, A.
    Meenakshi, S.
    Kumar, K. Ashok
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4227 - 4234
  • [30] A Knowledge Extraction Method Based on Deep Learning Applied to Distribution Network Fault Handing Assistant Decision
    Ji, Peng
    Jin, Shuangyuan
    Li, Chunxu
    Sun, Shubo
    Li, Zhi
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1140 - 1145