ADPL: Adaptive Dual Path Learning for Domain Adaptation of Semantic Segmentation

被引:18
|
作者
Cheng, Yiting [1 ]
Wei, Fangyun [2 ]
Bao, Jianmin [2 ]
Chen, Dong [2 ]
Zhang, Wenqiang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200437, Peoples R China
[2] Microsoft Res Asia, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain adaptation; semantic segmentation; image translation; self-supervised learning;
D O I
10.1109/TPAMI.2023.3248294
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To alleviate the need for large-scale pixel-wise annotations, domain adaptation for semantic segmentation trains segmentation models on synthetic data (source) with computer-generated annotations, which can be then generalized to segment realistic images (target). Recently, self-supervised learning (SSL) with a combination of image-to-image translation shows great effectiveness in adaptive segmentation. The most common practice is to perform SSL along with image translation to well align a single domain (source or target). However, in this single-domain paradigm, unavoidable visual inconsistency raised by image translation may affect subsequent learning. In addition, pseudo labels generated by a single segmentation model aligned in either the source or target domain may be not accurate enough for SSL. In this paper, based on the observation that domain adaptation frameworks performed in the source and target domain are almost complementary, we propose a novel adaptive dual path learning (ADPL) framework to alleviate visual inconsistency and promote pseudo-labeling by introducing two interactive single-domain adaptation paths aligned in source and target domain respectively. To fully explore the potential of this dual-path design, novel technologies such as dual path image translation (DPIT), dual path adaptive segmentation (DPAS), dual path pseudo label generation (DPPLG) and Adaptive ClassMix are proposed. The inference of ADPL is extremely simple, only one segmentation model in the target domain is employed. Our ADPL outperforms the state-of-the-art methods by large margins on GTA5 -> Cityscapes, SYNTHIA -> Cityscapes and GTA5 -> BDD100K scenarios. Code and models are available at https:// github.com/royee182/DPL.
引用
收藏
页码:9339 / 9356
页数:18
相关论文
共 50 条
  • [31] Knowledge based domain adaptation for semantic segmentation
    Zhang, Yuxiao
    Ye, Mao
    Gan, Yan
    Zhang, Wencong
    KNOWLEDGE-BASED SYSTEMS, 2020, 193
  • [32] Multichannel Semantic Segmentation with Unsupervised Domain Adaptation
    Watanabe, Kohei
    Saito, Kuniaki
    Ushiku, Yoshitaka
    Harada, Tatsuya
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 600 - 616
  • [33] Unsupervised Domain Adaptation in Semantic Segmentation: A Review
    Toldo, Marco
    Maracani, Andrea
    Michieli, Umberto
    Zanuttigh, Pietro
    TECHNOLOGIES, 2020, 8 (02)
  • [34] FDA: Fourier Domain Adaptation for Semantic Segmentation
    Yang, Yanchao
    Soatto, Stefano
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4084 - 4094
  • [35] Geometric Unsupervised Domain Adaptation for Semantic Segmentation
    Guizilini, Vitor
    Li, Jie
    Ambrus, Rares
    Gaidon, Adrien
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8517 - 8527
  • [36] Rethinking unsupervised domain adaptation for semantic segmentation
    Wang, Zhijie
    Suganuma, Masanori
    Okatani, Takayuki
    PATTERN RECOGNITION LETTERS, 2024, 186 : 119 - 125
  • [37] Unsupervised Domain Adaptation for Referring Semantic Segmentation
    Shi, Haonan
    Pan, Wenwen
    Zhao, Zhou
    Zhang, Mingmin
    Wu, Fei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5807 - 5818
  • [38] Distribution regularized self-supervised learning for domain adaptation of semantic segmentation
    Iqbal, Javed
    Rawal, Hamza
    Ha, Rehan
    Chi, Yu-Tseh
    Ali, Mohsen
    IMAGE AND VISION COMPUTING, 2022, 124
  • [39] Contrastive Learning and Self-Training for Unsupervised Domain Adaptation in Semantic Segmentation
    Marsden, Robert A.
    Bartler, Alexander
    Doebler, Mario
    Yang, Bin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [40] Adversarial Learning and Self-Teaching Techniques for Domain Adaptation in Semantic Segmentation
    Michieli, Umberto
    Biasetton, Matteo
    Agresti, Gianluca
    Zanuttigh, Pietro
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (03): : 508 - 518