Quasi-Localized High-Concentration Electrolytes for High-Voltage Lithium Metal Batteries

被引:74
|
作者
Cai, Wenlong [1 ]
Deng, Yan [1 ]
Deng, Zhiwen [1 ]
Jia, Ye [1 ]
Li, Zeheng [2 ]
Zhang, Xuemei [1 ]
Xu, Changhaoyue [1 ]
Zhang, Xue-Qiang [3 ]
Zhang, Yun [1 ]
Zhang, Qiang [2 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610064, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[3] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolyte solvation; high-voltage batteries; lithium metal anodes; quasi-localized high-concentration electrolyte; solid electrolyte interphases; INTERPHASE;
D O I
10.1002/aenm.202301396
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The poor compatibility with Li metal and electrolyte oxidation stability preclude the utilization of commercial ester-based electrolytes for high-voltage lithium metal batteries. This work proposes a quasi-localized high-concentration electrolyte (q-LHCE) by partially replacing solvents in conventional LiPF6 based carbonated electrolyte with fluorinated analogs (fluoroethylene carbonate (FEC), 2,2,2-trifluoroethyl methyl carbonate (FEMC)) with weakly-solvating ability. The q-LHCE enables the formation of an anion-rich solvation sheath, which functions like LHCE but differs in the partial participation of weakly-solvating cosolvent in the solvation structure. With this optimized electrolyte, inorganic-dominated solid electrolyte interphases are achieved on both the cathode and anode, leading to uniform Li deposition, suppressed electrolyte decomposition and cathode deterioration. Consequently, q-LHCE supports stable cycling of Li | LiCoO2 (& AP;3.5 mAh cm(-2)) cells at 4.5 V under the whole climate range (from -20 to 45 & DEG;C) with limited Li consumption. A practical ampere-hour level graphite | LiCoO2 pouch cell at 4.5 V and aggressive Li | LiNi0.5Mn1.5O4 cell at 5.0 V with excellent capacity retention further reveals the effectiveness of q-LHCE. The refinement of old-fashioned carbonate electrolytes provides new perspectives toward practical high-voltage battery systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A lightweight localized high-concentration ether electrolyte for high-voltage Li-Ion and Li-metal batteries
    Peng, Xudong
    Lin, Yanke
    Wang, Yu
    Li, Yiju
    Zhao, Tianshou
    NANO ENERGY, 2022, 96
  • [32] Methylation enables high-voltage ether electrolytes for lithium metal batteries
    Li, Ai-Min
    Wang, Chunsheng
    NATURE CHEMISTRY, 2024, 16 (06) : 852 - 853
  • [33] Progresses on advanced electrolytes engineering for high-voltage lithium metal batteries
    Dai, Shuaikang
    Fang, Wenqiang
    Wang, Tianxiang
    Gao, Yuanhang
    Zhang, Tao
    Qin, Zuosu
    Chen, Gen
    Zhou, Xiaozhong
    Chemical Engineering Journal, 1600, 500
  • [34] Stable cycling of high-voltage lithium metal batteries in ether electrolytes
    Jiao, Shuhong
    Ren, Xiaodi
    Cao, Ruiguo
    Engelhard, Mark H.
    Liu, Yuzi
    Hu, Dehong
    Mei, Donghai
    Zheng, Jianming
    Zhao, Wengao
    Li, Qiuyan
    Liu, Ning
    Adams, Brian D.
    Ma, Cheng
    Liu, Jun
    Zhang, Ji-Guang
    Xu, Wu
    NATURE ENERGY, 2018, 3 (09): : 739 - 746
  • [35] Stable cycling of high-voltage lithium metal batteries in ether electrolytes
    Shuhong Jiao
    Xiaodi Ren
    Ruiguo Cao
    Mark H. Engelhard
    Yuzi Liu
    Dehong Hu
    Donghai Mei
    Jianming Zheng
    Wengao Zhao
    Qiuyan Li
    Ning Liu
    Brian D. Adams
    Cheng Ma
    Jun Liu
    Ji-Guang Zhang
    Wu Xu
    Nature Energy, 2018, 3 : 739 - 746
  • [36] Strongly Solvating Ether Electrolytes for High-Voltage Lithium Metal Batteries
    Chen, Shunqiang
    Zhu, Weiduo
    Tan, Lijiang
    Ruan, Digen
    Fan, JiaJia
    Chen, Yunhua
    Meng, Xianhui
    Nian, Qingshun
    Zhao, Xin
    Jiang, Jinyu
    Wang, Zihong
    Jiao, Shuhong
    Wu, Xiaojun
    Ren, Xiaodi
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (10) : 13155 - 13164
  • [37] Effects of Fluorinated Diluents in Localized High-Concentration Electrolytes for Lithium-Oxygen Batteries
    Kwak, Won-Jin
    Lim, Hyung-Seok
    Gao, Peiyuan
    Feng, Ruozhu
    Chae, Sujong
    Zhong, Lirong
    Read, Jeffrey
    Engelhard, Mark H.
    Xu, Wu
    Zhang, Ji-Guang
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)
  • [38] Functional Localized High-Concentration Ether-Based Electrolyte for Stabilizing High-Voltage Lithium-Metal Battery
    Lin, Shuangshuang
    Hua, Haiming
    Li, Zhisen
    Zhao, Jinbao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (30) : 33710 - 33718
  • [39] High-performance lithium metal batteries enabled by fluorinated aromatic diluent assisted nonflammable localized high-concentration electrolytes
    Xu, Zelin
    Deng, Kuirong
    Zhou, Suping
    Mo, Daize
    JOURNAL OF POWER SOURCES, 2023, 559
  • [40] Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte
    Wang, Wei
    Zhang, Jiaolong
    Yang, Qin
    Wang, Shuwei
    Wang, Wenhui
    Li, Baohua
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (20) : 22901 - 22909