Classification of edge-transitive Nest graphs

被引:0
|
作者
Kovacs, Istvan [1 ,2 ]
机构
[1] Univ Primorska, UP IAM, Muzejski Trg 2, Koper 6000, Slovenia
[2] Univ Primorska, UP FAMNIT, Glagoljaska Ul 8, Koper 6000, Slovenia
关键词
Bicirculant; Edge-transitive;
D O I
10.1007/s00373-023-02659-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite simple graph F is called a Nest graph if it is regular of valency 6 and admits an automorphism with two orbits of the same length such that at least one of the subgraphs induced by these orbits is a cycle. In this paper, we complete classification of the edge-transitive Nest graphs and by this solve the problem posed by Jajcay et al. (Electron J Comb 26:#P2.6, 2019).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Classification of edge-transitive Nest graphs
    István Kovács
    Graphs and Combinatorics, 2023, 39
  • [2] Classification of Edge-Transitive Rose Window Graphs
    Kovacs, Istvan
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF GRAPH THEORY, 2010, 65 (03) : 216 - 231
  • [3] EDGE-TRANSITIVE PLANAR GRAPHS
    GRUNBAUM, B
    SHEPHARD, GC
    JOURNAL OF GRAPH THEORY, 1987, 11 (02) : 141 - 155
  • [4] Edge-transitive token graphs
    Zhang, Ju
    Zhou, Jin-Xin
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [5] Biprimitive edge-transitive pentavalent graphs
    Cai, Qi
    Lu, Zai Ping
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [6] Semiregular automorphisms of edge-transitive graphs
    Michael Giudici
    Primož Potočnik
    Gabriel Verret
    Journal of Algebraic Combinatorics, 2014, 40 : 961 - 972
  • [7] Perfect Matchings in Edge-Transitive Graphs
    Marandi, A.
    Nejah, A. H.
    Behmaram, A.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 5 : S27 - S33
  • [8] Semiregular automorphisms of edge-transitive graphs
    Giudici, Michael
    Potocnik, Primoz
    Verret, Gabriel
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (04) : 961 - 972
  • [9] Weakly Norming Graphs are Edge-Transitive
    Alexander Sidorenko
    Combinatorica, 2020, 40 : 601 - 604
  • [10] A family of edge-transitive Cayley graphs
    Jiangmin Pan
    Zhaofei Peng
    Journal of Algebraic Combinatorics, 2019, 49 : 147 - 167