Deep learning-assisted frequency-domain photoacoustic microscopy

被引:3
|
作者
Tserevelakis, George J. [1 ]
Barmparis, Georgios D. [2 ,3 ]
Kokosalis, Nikolaos [1 ]
Giosa, Eirini Smaro [1 ]
Pavlopoulos, Anastasios [4 ]
Tsironis, Giorgos P. [1 ,2 ,3 ]
Zacharakis, Giannis [1 ]
机构
[1] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 70013, Greece
[2] Univ Crete, Inst Theoret & Computat Phys, Iraklion 71003, Greece
[3] Univ Crete, Dept Phys, Iraklion 71003, Greece
[4] Fdn Res & Technol Hellas, Inst Mol Biol & Biotechnol, Iraklion 70013, Greece
基金
欧盟地平线“2020”;
关键词
Compendex;
D O I
10.1364/OL.486624
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Frequency-domain photoacoustic microscopy (FD-PAM) constitutes a powerful cost-efficient imaging method integrating intensity-modulated laser beams for the excitation of single-frequency photoacoustic waves. Nevertheless, FDPAM provides an extremely small signal-to-noise ratio (SNR), which can be up to two orders of magnitude lower than the conventional time-domain (TD) systems. To overcome this inherent SNR limitation of FD-PAM, we utilize a U-Net neural network aiming at image augmentation without the need for excessive averaging or the application of high optical power. In this context, we improve the accessibility of PAM as the system's cost is dramatically reduced, and we expand its applicability to demanding observations while retaining sufficiently high image quality standards. (c) 2023 Optica Publishing Group
引用
收藏
页码:2720 / 2723
页数:4
相关论文
共 50 条
  • [41] Accelerating 2D and 3D frequency-domain seismic wave modeling through interpolating frequency-domain wavefields by deep learning
    Cao, Wenzhong
    Li, Quanli
    Zhang, Jie
    Zhang, Wei
    GEOPHYSICS, 2022, 87 (04) : T315 - T328
  • [42] Deep learning-assisted analysis of single molecule dynamics from liquid-phase electron microscopy
    Cheng, Bin
    Ye, Enze
    Sun, He
    Wang, Huan
    CHEMICAL COMMUNICATIONS, 2023, 59 (12) : 1701 - 1704
  • [43] Universal Approximation Theorem and Deep Learning for the Solution of Frequency-Domain Electromagnetic Scattering Problems
    Wang, Ji-Yuan
    Pan, Xiao-Min
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (12) : 9274 - 9285
  • [44] Depression Diagnosis Modeling With Advanced Computational Methods: Frequency-Domain eMVAR and Deep Learning
    Uyulan, Caglar
    de la Salle, Sara
    Erguzel, Turker T.
    Lynn, Emma
    Blier, Pierre
    Knott, Verner
    Adamson, Maheen M.
    Zelka, Mehmet
    Tarhan, Nevzat
    CLINICAL EEG AND NEUROSCIENCE, 2022, 53 (01) : 24 - 36
  • [45] Experimental design and numerical investigation of a photoacoustic sensor for a low-power, continuous-wave, laser-based frequency-domain photoacoustic microscopy
    Sathiyamoorthy, Krishnan
    Kolios, Michael C.
    JOURNAL OF BIOMEDICAL OPTICS, 2019, 24 (12)
  • [46] Denoising method for photoacoustic microscopy using deep learning
    Tang, Kanggao
    Li, Bo
    Zhang, Jinhong
    Wei, Jianshuang
    Song, Lingfang
    Song, Xianlin
    SPIE FUTURE SENSING TECHNOLOGIES (2020), 2020, 11525
  • [47] Multimodal Optical Resolution Photoacoustic and Fluorescence Microscopy in the Frequency Domain
    Buchegger, Bianca
    Langer, Gregor
    Jacak, Jaroslaw
    Klar, Thomas A.
    Berer, Thomas
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 581A - 581A
  • [48] FREQUENCY-DOMAIN MIGRATION OF DEEP CONTINENTAL CRUSTAL SECTIONS
    BLOXSOM, H
    OTTOLINI, R
    GEOPHYSICS, 1979, 44 (03) : 384 - 384
  • [49] Deep learning-assisted IoMT framework for cerebral microbleed detection
    Ali, Zeeshan
    Naz, Sheneela
    Yasmin, Sadaf
    Bukhari, Maryam
    Kim, Mucheol
    HELIYON, 2023, 9 (12)
  • [50] Deep Learning-Assisted Jamming Mitigation with Movable Antenna Array
    Tang, Xiao
    Jiang, Yudan
    Liu, Jinxin
    Du, Qinghe
    Niyato, Dusit
    Han, Zhu
    arXiv,