Deep learning-assisted frequency-domain photoacoustic microscopy

被引:3
|
作者
Tserevelakis, George J. [1 ]
Barmparis, Georgios D. [2 ,3 ]
Kokosalis, Nikolaos [1 ]
Giosa, Eirini Smaro [1 ]
Pavlopoulos, Anastasios [4 ]
Tsironis, Giorgos P. [1 ,2 ,3 ]
Zacharakis, Giannis [1 ]
机构
[1] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 70013, Greece
[2] Univ Crete, Inst Theoret & Computat Phys, Iraklion 71003, Greece
[3] Univ Crete, Dept Phys, Iraklion 71003, Greece
[4] Fdn Res & Technol Hellas, Inst Mol Biol & Biotechnol, Iraklion 70013, Greece
基金
欧盟地平线“2020”;
关键词
Compendex;
D O I
10.1364/OL.486624
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Frequency-domain photoacoustic microscopy (FD-PAM) constitutes a powerful cost-efficient imaging method integrating intensity-modulated laser beams for the excitation of single-frequency photoacoustic waves. Nevertheless, FDPAM provides an extremely small signal-to-noise ratio (SNR), which can be up to two orders of magnitude lower than the conventional time-domain (TD) systems. To overcome this inherent SNR limitation of FD-PAM, we utilize a U-Net neural network aiming at image augmentation without the need for excessive averaging or the application of high optical power. In this context, we improve the accessibility of PAM as the system's cost is dramatically reduced, and we expand its applicability to demanding observations while retaining sufficiently high image quality standards. (c) 2023 Optica Publishing Group
引用
收藏
页码:2720 / 2723
页数:4
相关论文
共 50 条
  • [21] PHASE MEASUREMENTS IN THE FREQUENCY-DOMAIN PHOTOACOUSTIC-SPECTROSCOPY OF SOLIDS
    MANDELIS, A
    TENG, YC
    ROYCE, BSH
    JOURNAL OF APPLIED PHYSICS, 1979, 50 (11) : 7138 - 7146
  • [22] A cost-efficient frequency-domain photoacoustic imaging system
    LeBoulluec, Peter
    Liu, Hanli
    Yuan, Baohong
    AMERICAN JOURNAL OF PHYSICS, 2013, 81 (09) : 712 - 717
  • [23] A FREQUENCY-DOMAIN ANALYSIS OF LEARNING CONTROL
    GOH, CJ
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1994, 116 (04): : 781 - 786
  • [24] Deep and Domain Transfer Learning Aided Photoacoustic Microscopy: Acoustic Resolution to Optical Resolution
    Zhang, Zhengyuan
    Jin, Haoran
    Zheng, Zesheng
    Sharma, Arunima
    Wang, Lipo
    Pramanik, Manojit
    Zheng, Yuanjin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3636 - 3648
  • [25] Precise measurement of nanoscopic septin ring structures with deep learning-assisted quantitative superresolution microscopy
    Zehtabian, Amin
    Mueller, Paul Markus
    Goisser, Maximilian
    Obendorf, Leon
    Jaenisch, Lea
    Huempfer, Nadja
    Rentsch, Jakob
    Ewers, Helge
    MOLECULAR BIOLOGY OF THE CELL, 2022, 33 (08)
  • [26] Fast Frequency-Domain Analysis for Parametric Electromagnetic Models Using Deep Learning
    Mattucci, Elia
    Feng, Lihong
    Benner, Peter
    Romano, Daniele
    Antonini, Giulio
    2023 IEEE 32ND CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS, EPEPS, 2023,
  • [27] Full image reconstruction in frequency-domain photoacoustic microscopy by means of a low-cost I/Q demodulator
    Tserevelakis, George J.
    Mavrakis, Kostas G.
    Kakakios, Nikitas
    Zacharakis, Giannis
    OPTICS LETTERS, 2021, 46 (19) : 4718 - 4721
  • [28] Frequency domain non-contact photoacoustic microscopy
    George, Deepu
    Lloyd, Harriet
    Silverman, Ronald H.
    Chitnis, Parag V.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2017, 2017, 10064
  • [29] Frequency-Domain Deep Guided Image Denoising
    Sheng, Zehua
    Liu, Xiongwei
    Cao, Si-Yuan
    Shen, Hui-Liang
    Zhang, Huaqi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6767 - 6781
  • [30] Frequency-domain fluorescence microscopy with the LED as a light source
    Herman, P
    Maliwal, BP
    Lin, HJ
    Lakowicz, JR
    JOURNAL OF MICROSCOPY-OXFORD, 2001, 203 : 176 - 181