Deep learning-assisted frequency-domain photoacoustic microscopy

被引:3
作者
Tserevelakis, George J. [1 ]
Barmparis, Georgios D. [2 ,3 ]
Kokosalis, Nikolaos [1 ]
Giosa, Eirini Smaro [1 ]
Pavlopoulos, Anastasios [4 ]
Tsironis, Giorgos P. [1 ,2 ,3 ]
Zacharakis, Giannis [1 ]
机构
[1] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 70013, Greece
[2] Univ Crete, Inst Theoret & Computat Phys, Iraklion 71003, Greece
[3] Univ Crete, Dept Phys, Iraklion 71003, Greece
[4] Fdn Res & Technol Hellas, Inst Mol Biol & Biotechnol, Iraklion 70013, Greece
基金
欧盟地平线“2020”;
关键词
Compendex;
D O I
10.1364/OL.486624
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Frequency-domain photoacoustic microscopy (FD-PAM) constitutes a powerful cost-efficient imaging method integrating intensity-modulated laser beams for the excitation of single-frequency photoacoustic waves. Nevertheless, FDPAM provides an extremely small signal-to-noise ratio (SNR), which can be up to two orders of magnitude lower than the conventional time-domain (TD) systems. To overcome this inherent SNR limitation of FD-PAM, we utilize a U-Net neural network aiming at image augmentation without the need for excessive averaging or the application of high optical power. In this context, we improve the accessibility of PAM as the system's cost is dramatically reduced, and we expand its applicability to demanding observations while retaining sufficiently high image quality standards. (c) 2023 Optica Publishing Group
引用
收藏
页码:2720 / 2723
页数:4
相关论文
共 22 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] A non-local algorithm for image denoising
    Buades, A
    Coll, B
    Morel, JM
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 60 - 65
  • [3] Deep-learning-based motion-correction algorithm in optical resolution photoacoustic microscopy
    Chen, Xingxing
    Qi, Weizhi
    Xi, Lei
    [J]. VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2019, 2 (01)
  • [4] Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-Sensitivity Methodology for the Detection of Early-Stage Tumors in Tissues
    Choi, S.
    Mandelis, A.
    Guo, X.
    Lashkari, B.
    Kellnberger, S.
    Ntziachristos, V.
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2015, 36 (5-6) : 1305 - 1311
  • [5] Chollet F, 2015, KERAS
  • [6] Reconstructing Undersampled Photoacoustic Microscopy Images Using Deep Learning
    DiSpirito, Anthony, III
    Li, Daiwei
    Vu, Tri
    Chen, Maomao
    Zhang, Dong
    Luo, Jianwen
    Horstmeyer, Roarke
    Yao, Junjie
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (02) : 562 - 570
  • [7] Deep learning for biomedical photoacoustic imaging: A review
    Groehl, Janek
    Schellenberg, Melanie
    Dreher, Kris
    Maier-Hein, Lena
    [J]. PHOTOACOUSTICS, 2021, 22
  • [8] Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy
    Harma, Arunima S.
    Ramanik, Manojit P.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2020, 11 (12) : 6826 - 6839
  • [9] Multi-wavelength photo-acoustic microscopy in the frequency domain for simultaneous excitation and detection of dyes
    Hugon, Olivier
    van der Sanden, Boudewijn
    Inglebert, Mehdi
    Jacquin, Olivier
    Misbah, Chaouqi
    Lacot, Eric
    [J]. BIOMEDICAL OPTICS EXPRESS, 2019, 10 (02): : 932 - 943
  • [10] Optoacoustic microscopy at multiple discrete frequencies
    Kellnberger, Stephan
    Soliman, Dominik
    Tserevelakis, George J.
    Seeger, Markus
    Yang, Hong
    Karlas, Angelos
    Prade, Ludwig
    Omar, Murad
    Ntziachristos, Vasilis
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2018, 7