R-NL: Covariance Matrix Estimation for Elliptical Distributions Based on Nonlinear Shrinkage

被引:2
|
作者
Hediger, Simon [1 ]
Naf, Jeffrey [2 ]
Wolf, Michael [1 ]
机构
[1] Univ Zurich, Dept Econ, CH-8006 Zurich, Switzerland
[2] Premed Inria Inserm, F-34090 Montpellier, France
关键词
Covariance matrices; Eigenvalues and eigenfunctions; Heavily-tailed distribution; Tail; Estimation; Dispersion; Convergence; Heavy tails; nonlinear shrinkage; portfolio optimization; OPTIMIZATION; EIGENVALUES;
D O I
10.1109/TSP.2023.3270742
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We combine Tyler's robust estimator of the dispersion matrix with nonlinear shrinkage. This approach delivers a simple and fast estimator of the dispersion matrix in elliptical models that is robust against both heavy tails and high dimensions. We prove convergence of the iterative part of our algorithm and demonstrate the favorable performance of the estimator in a wide range of simulation scenarios. Finally, an empirical application demonstrates its state-of-the-art performance on real data.
引用
收藏
页码:1657 / 1668
页数:12
相关论文
共 36 条
  • [21] Robust speckle covariance matrix estimation of sea clutter based on spectral symmetry
    Zhang, Yi-Chen
    Shui, Peng -Lang
    SIGNAL PROCESSING, 2024, 224
  • [22] Enhancing Traditional Underwater DoA Estimation Techniques Using Convolutional Autoencoder-Based Covariance Matrix Reconstruction
    Ali, Murtiza
    Sofi, Kaisar Hameed
    Nathwani, Karan
    IEEE SENSORS LETTERS, 2025, 9 (01)
  • [23] 2D-DOA Estimation in Arc-Array With a DNN Based Covariance Matrix Completion Strategy
    Tian, Ye
    Mei, Ruru
    Huang, Yonghui
    Tang, Xiaogang
    Cui, Tianshu
    IEEE ACCESS, 2022, 10 : 57608 - 57620
  • [24] Non-linear shrinkage-based precision matrix estimation for space-time adaptive processing
    Zhang, Dandan
    Tang, Jun
    Tang, Bo
    IET RADAR SONAR AND NAVIGATION, 2017, 11 (09): : 1379 - 1387
  • [25] Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions
    Cai, T. Tony
    Liang, Tengyuan
    Zhou, Harrison H.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 137 : 161 - 172
  • [26] Robust adaptive beamforming method based on desired signal steering vector estimation and interference-Plus-noise covariance matrix reconstruction
    Huang, Junsheng
    Su, Hongtao
    Yang, Yang
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7683 - 7686
  • [27] Low-complexity robust adaptive beamforming method for MIMO radar based on covariance matrix estimation and steering vector mismatch correction
    Huang, Junsheng
    Su, Hongtao
    Yang, Yang
    IET RADAR SONAR AND NAVIGATION, 2019, 13 (05): : 712 - 720
  • [28] A robust STAP method for airborne radar based on clutter covariance matrix reconstruction and steering vector estimation
    Li, Zhihui
    Zhang, Yongshun
    Liu, Hanwei
    Xue, Bin
    Liu, Yang
    DIGITAL SIGNAL PROCESSING, 2018, 78 : 82 - 91
  • [29] A New Approach for Brain Source Position Estimation Based on the Eigenvalues of the EEG Sensors Spatial Covariance Matrix
    Cruz, Lucas F.
    Magalhaes, Marcela G.
    Kunzler, Jonas A.
    Coelho, Andre A. S.
    Lemos, Rodrigo P.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2, 2019, 68 (02): : 271 - 274
  • [30] Maximum Likelihood-Based Gridless DoA Estimation Using Structured Covariance Matrix Recovery and SBL With Grid Refinement
    Pote, Rohan R.
    Rao, Bhaskar D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 802 - 815