RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS APPROXIMATED BY IMMERSED FINITE ELEMENT METHODS

被引:0
作者
Chen, Yanping [1 ]
Lu, Jiao [2 ]
Wang, Yang [3 ]
Huang, Yunqing [4 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[3] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Peoples R China
[4] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Interface problems; a posteriori error estimator; immersed finite element methods; adaptive refined meshes; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a residual-based a posteriori error estimator for partially penalized immersed finite element (PPIFE) approximation to elliptic interface problems. Utilizing the error equation for the PPIFE approximation, we construct an a posteriori error estimator. Properly weighted coefficients are proposed for the terms in indicators to overcome the dependence of the efficiency constants on the jump of the diffusion coefficients across the interface. The PPIFE method is based on non-body-fitted mesh, and hence we perform detailed analysis on the local efficiency bounds of the estimator on regular and irregular interface elements with different techniques. We introduce a new approach, which does not involve the Helmholtz decomposition, to give the reliability bounds of the estimator with an L2 representation of the true error as the main tool. More importantly, the efficiency and reliability constants are independent of the interface location and the mesh size. Numerical experiments are provided to illustrate the efficiency of the estimator and the adaptive mesh refinement for different jump rates or interface geometries.
引用
收藏
页码:997 / 1018
页数:22
相关论文
共 42 条
  • [1] A posteriori error estimation in finite element analysis
    Ainsworth, M
    Oden, JT
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) : 1 - 88
  • [2] Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
  • [3] Bernardi C., 2000, NUMER MATH, V85, P1
  • [4] DISCONTINUOUS FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: ROBUST A PRIORI AND A POSTERIORI ERROR ESTIMATES
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 400 - 418
  • [5] Chen L., 2008, PREPRINT
  • [6] An interface-fitted mesh generator and virtual element methods for elliptic interface problems
    Chen, Long
    Wei, Huayi
    Wen, Min
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 334 : 327 - 348
  • [7] Chen Y, 2021, INT J NUMER ANAL MOD, V18, P120
  • [8] The adaptive immersed interface finite element method for elliptic and Maxwell interface problems
    Chen, Zhiming
    Xiao, Yuanming
    Zhang, Linbo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) : 5000 - 5019
  • [9] Finite element methods and their convergence for elliptic and parabolic interface problems
    Chen, ZM
    Zou, J
    [J]. NUMERISCHE MATHEMATIK, 1998, 79 (02) : 175 - 202
  • [10] A high-order immersed interface method free of derivative jump conditions for Poisson equations on irregular domains
    Colnago, Marilaine
    Casaca, Wallace
    de Souza, Leandro Franco
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423