On the Hochschild homology of proper Lie groupoids

被引:0
作者
Pflaum, Markus J. [1 ]
Posthuma, Hessel [2 ]
Tang, Xiang [3 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[3] Washington Univ, Dept Math & Stat, St Louis, MO 63105 USA
关键词
Convolution algebra; proper Lie groupoid; Hochschild homology; CYCLIC HOMOLOGY; CROSSED-PRODUCTS; VECTOR-FIELDS; LINEARIZATION; COHOMOLOGY; ALGEBRAS; SPACES; INTEGRABILITY; THEOREM;
D O I
10.4171/JNCG/467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Hochschild homology of the convolution algebra of a proper Lie groupoid by introducing a convolution sheaf over the space of orbits. We develop a localization result for the associated Hochschild homology sheaf, and we prove that the Hochschild homology sheaf at each stalk is quasi-isomorphic to the stalk at the origin of the Hochschild homology of the convolution algebra of its linearization, which is the transformation groupoid of a linear action of a compact isotropy group on a vector space. We then explain Brylinski's ansatz to compute the Hochschild homology of the transformation groupoid of a compact group action on a manifold. We verify Brylinski's conjecture for the case of smooth circle actions that the Hochschild homology is given by basic relative forms on the associated inertia space.
引用
收藏
页码:101 / 162
页数:62
相关论文
共 53 条
[1]  
Baum P., 1988, Chern character for discrete groups, A fete of topology, P163, DOI [10.1016/B978-0-12-480440-1.50015-0, DOI 10.1016/B978-0-12-480440-1.50015-0]
[2]  
Blanc P., 1985, AST RISQUE, V124-125, P113
[3]  
BLOCK J, 1994, ANN SCI ECOLE NORM S, V27, P493
[4]   On the homology of algebras of Whitney functions over subanalytic sets [J].
Brasselet, Jean-Paul ;
Pflaum, Markus J. .
ANNALS OF MATHEMATICS, 2008, 167 (01) :1-52
[5]  
BREDON GE, 1972, PURE APPL MATH, V0046
[6]   The periodic cyclic homology of crossed products of finite type algebras [J].
Brodzki, Jacek ;
Dave, Shantanu ;
Nistor, Victor .
ADVANCES IN MATHEMATICS, 2017, 306 :494-523
[7]  
Brylinski J. -L., 1987, PREPRINTS
[8]  
Brylinski J. -L., 1994, K-Theory, V8, P341
[9]   CYCLIC HOMOLOGY AND EQUIVARIANT THEORIES [J].
BRYLINSKI, JL .
ANNALES DE L INSTITUT FOURIER, 1987, 37 (04) :15-28
[10]   THE CYCLIC HOMOLOGY OF THE GROUP-RINGS [J].
BURGHELEA, D .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (03) :354-365