Periodic Lorentz gas with small scatterers

被引:0
作者
Balint, Peter [1 ,2 ]
Bruin, Henk [3 ]
Terhesiu, Dalia [4 ]
机构
[1] Budapest Univ Technol & Econ, MTA BME Stochast Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Univ Vienna, Fac Math, Oskar Morgensternpl 1, A-1090 Vienna, Austria
[4] Leiden Univ, Inst Math, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Lorentz gas; Small scatterers; Billiards; Limit theorems; Nagaev-Guivarc'h method; STATISTICAL PROPERTIES; LIMIT; THEOREMS; SYSTEMS; LAWS;
D O I
10.1007/s00440-023-01197-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove limit laws for infinite horizon planar periodic Lorentz gases when, as time n tends to infinity, the scatterer size rho may also tend to zero simultaneously at a sufficiently slow pace. In particular we obtain a non-standard Central Limit Theorem as well as a Local Limit Theorem for the displacement function. To the best of our knowledge, these are the first results on an intermediate case between the two well studied regimes with superdiffusive root n log n scaling (i) for fixed infinite horizon configurations & mdash;letting first n -> infinity and then rho -> 0 & mdash;studied e.g. by Sz & aacute;sz and Varj & uacute; (J Stat Phys 129(1):59-80, 2007) and (ii) Boltzmann-Grad type situations & mdash; letting first rho -> 0 and then n -> infinity & mdash;studied by Marklof and T & oacute;th (Commun Math Phys 347(3):933-981, 2016) .
引用
收藏
页码:159 / 219
页数:61
相关论文
共 34 条
  • [21] Mixing for Some Non-Uniformly Hyperbolic Systems
    Liverani, Carlangelo
    Terhesiu, Dalia
    [J]. ANNALES HENRI POINCARE, 2016, 17 (01): : 179 - 226
  • [22] Lorent HA, 1905, P K AKAD WET-AMSTERD, V7, P438
  • [23] Invariance Principle for the Random Lorentz Gas-Beyond the Boltzmann-Grad Limit
    Lutsko, Christopher
    Toth, Balint
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (02) : 589 - 632
  • [24] Superdiffusion in the Periodic Lorentz Gas
    Marklof, Jens
    Toth, Balint
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 347 (03) : 933 - 981
  • [25] The Boltzmann-Grad limit of the periodic Lorentz gas
    Marklof, Jens
    Strombergsson, Andreas
    [J]. ANNALS OF MATHEMATICS, 2011, 174 (01) : 225 - 298
  • [26] The Periodic Lorentz Gas in The Boltzmann-Grad Limit: Asymptotic Estimates
    Marklof, Jens
    Stroembergsson, Andreas
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (03) : 560 - 647
  • [27] Renewal theorems and mixing for non Markov flows with infinite measure
    Melbourne, Ian
    Terhesiu, Dalia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01): : 449 - 476
  • [28] Sharp Error Term in Local Limit Theorems and Mixing for Lorentz Gases with Infinite Horizon
    Pene, Francoise
    Terhesiu, Dalia
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (03) : 1625 - 1689
  • [29] Mixing and decorrelation in infinite measure: The case of the periodic Sinai billiard
    Pene, Francoise
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (01): : 378 - 411
  • [30] Szász D, 2004, ERGOD THEOR DYN SYST, V24, P257