More is Different: Metabolic Modeling of Diverse Microbial Communities

被引:12
作者
Diener, Christian [1 ]
Gibbons, Sean M. [1 ,2 ,3 ]
机构
[1] Inst Syst Biol, Seattle, WA 98109 USA
[2] Univ Washington, Dept Bioengn & Genome Sci, Seattle, WA 98195 USA
[3] Univ Washington, Esci Inst, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
flux balance analysis; metabolic modeling; metabolism; microbial communities; microbial ecology; systems biology; GUT; OPTIMALITY; FLUX;
D O I
10.1128/msystems.01270-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microbial consortia drive essential processes, ranging from nitrogen fixation in soils to providing metabolic breakdown products to animal hosts. However, it is challenging to translate the composition of microbial consortia into their emergent functional capacities. Microbial consortia drive essential processes, ranging from nitrogen fixation in soils to providing metabolic breakdown products to animal hosts. However, it is challenging to translate the composition of microbial consortia into their emergent functional capacities. Community-scale metabolic models hold the potential to simulate the outputs of complex microbial communities in a given environmental context, but there is currently no consensus for what the fitness function of an entire community should look like in the presence of ecological interactions and whether community-wide growth operates close to a maximum. Transitioning from single-taxon genome-scale metabolic models to multitaxon models implies a growth cone without a well-specified growth rate solution for individual taxa. Here, we argue that dynamic approaches naturally overcome these limitations, but they come at the cost of being computationally expensive. Furthermore, we show how two nondynamic, steady-state approaches approximate dynamic trajectories and pick ecologically relevant solutions from the community growth cone with improved computational scalability.
引用
收藏
页数:9
相关论文
共 37 条
  • [1] The biomass distribution on Earth
    Bar-On, Yinon M.
    Phillips, Rob
    Milo, Ron
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) : 6506 - 6511
  • [2] Basile A., 2022, BIORXIV
  • [3] BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities
    Bauer, Eugen
    Zimmermann, Johannes
    Baldini, Federico
    Thiele, Ines
    Kaleta, Christoph
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (05)
  • [4] SteadyCom: Predicting microbial abundances while ensuring community stability
    Chan, Siu Hung Joshua
    Simons, Margaret N.
    Maranas, Costas D.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (05)
  • [5] Diener C, 2020, MSYSTEMS, V5, DOI [DOI 10.1128/MSYSTEMS.00606-19, 10.1128/mSystems.00606-19]
  • [6] A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS)
    Dukovski, Ilija
    Bajic, Djordje
    Chacon, Jeremy M.
    Quintin, Michael
    Vila, Jean C. C.
    Sulheim, Snorre
    Pacheco, Alan R.
    Bernstein, David B.
    Riehl, William J.
    Korolev, Kirill S.
    Sanchez, Alvaro
    Harcombe, William R.
    Segre, Daniel
    [J]. NATURE PROTOCOLS, 2021, 16 (11) : 5030 - +
  • [7] Gut microbiota in human metabolic health and disease
    Fan, Yong
    Pedersen, Oluf
    [J]. NATURE REVIEWS MICROBIOLOGY, 2021, 19 (01) : 55 - 71
  • [8] Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit
    Gupta, Apoorv
    Reizman, Irene M. Brockman
    Reisch, Christopher R.
    Prather, Kristala L. J.
    [J]. NATURE BIOTECHNOLOGY, 2017, 35 (03) : 273 - +
  • [9] A metabolomics pipeline for the mechanistic interrogation of the gut microbiome
    Han, Shuo
    Van Treuren, Will
    Fischer, Curt R.
    Merrill, Bryan D.
    DeFelice, Brian C.
    Sanchez, Juan M.
    Higginbottom, Steven K.
    Guthrie, Leah
    Fall, Lalla A.
    Dodd, Dylan
    Fischbach, Michael A.
    Sonnenburg, Justin L.
    [J]. NATURE, 2021, 595 (7867) : 415 - +
  • [10] The Ability of Flux Balance Analysis to Predict Evolution of Central Metabolism Scales with the Initial Distance to the Optimum
    Harcombe, William R.
    Delaney, Nigel F.
    Leiby, Nicholas
    Klitgord, Niels
    Marx, Christopher J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (06)