Effect of Spatio-Temporal Granularity on Demand Prediction for Deep Learning Models

被引:0
|
作者
Varghese, Ken Koshy [1 ]
Mahdaviabbasabad, Sajjad [1 ]
Gentile, Guido [1 ]
Eldafrawi, Mohamed [1 ]
机构
[1] Univ Roma La Sapienza, Via Eudossiana 18, I-00184 Rome, Italy
关键词
Taxi Demand; Demand Forecasting; Spatiotemporal Granularity; Deep Learning; Grid Clustering;
D O I
10.2478/ttj-2023-0003
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Advances in machine learning technology and the availability of big data from GPS systems have led to the development of effective methods for modelling transportation demand and forecasting the future. Most previous research concentrated on demand prediction using a variety of machine learning and deep learning models that took into account spatial and temporal relationships. This paper investigates the impact of spaces and time granularity for a Spatio-temporal demand modelling framework. Using taxi demand data from New York City, our study compares the prediction performance of deep learning models such as Long Short-Term Memory (LSTM), Convolution Neural Networks (CNN) and Temporal-Guided Networks (TGNet), modelled with a grid-based tessellation strategy. The findings of this study could assist researchers in better understanding how the granularity of space and time helps deep learning models perform better for demand forecasting problems.
引用
收藏
页码:22 / 32
页数:11
相关论文
共 50 条
  • [1] DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction
    Wang, Dongjie
    Yang, Yan
    Ning, Shangming
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [2] Spatio-Temporal Abnormal Behavior Prediction in Elderly Persons Using Deep Learning Models
    Zerkouk, Meriem
    Chikhaoui, Belkacem
    SENSORS, 2020, 20 (08)
  • [3] A comparative analysis of deep learning models for accurate spatio-temporal soil moisture prediction
    Zhu, Litao
    Dai, Wen
    Huang, Jiru
    Luo, Zicong
    GEOCARTO INTERNATIONAL, 2025, 40 (01)
  • [4] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)
  • [5] Deep Learning Model for Global Spatio-Temporal Image Prediction
    Nikezic, Dusan P.
    Ramadani, Uzahir R.
    Radivojevic, Dusan S.
    Lazovic, Ivan M.
    Mirkov, Nikola S.
    MATHEMATICS, 2022, 10 (18)
  • [6] Learning sets of sub-models for spatio-temporal prediction
    Bennett, Andrew
    Magee, Derek
    RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXIV, 2008, : 123 - 136
  • [7] A spatio-temporal deep learning model for short-term bike-sharing demand prediction
    Jia, Ruo
    Chamoun, Richard
    Wallenbring, Alexander
    Advand, Masoomeh
    Yu, Shanchuan
    Liu, Yang
    Gao, Kun
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02): : 1031 - 1047
  • [8] Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models
    Nevavuori, Petteri
    Narra, Nathaniel
    Linna, Petri
    Lipping, Tarmo
    REMOTE SENSING, 2020, 12 (23) : 1 - 18
  • [9] MACHINE LEARNING AND DEEP LEARNING FOR ENHANCED SPATIO-TEMPORAL WAVE PARAMETERS PREDICTION
    Tan, Tian
    Venugopal, Vengatesan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 6, 2024,
  • [10] Wind Speed Prediction with Spatio-Temporal Correlation: A Deep Learning Approach
    Zhu, Qiaomu
    Chen, Jinfu
    Zhu, Lin
    Duan, Xianzhong
    Liu, Yilu
    ENERGIES, 2018, 11 (04)