A graphic processing unit implementation for the moment representation of the lattice Boltzmann method

被引:7
作者
Ferrari, Marco A. A. [1 ,3 ]
de Oliveira Jr, Waine B. B. [1 ]
Lugarini, Alan [1 ]
Franco, Admilson T. T. [1 ]
Hegele Jr, Luiz A. A. [2 ]
机构
[1] Fed Univ Technol Parana UTFPR, Res Ctr Rheol & Nonnewtonian Fluids CERNN, Postgrad Program Mech & Mat Engn, Curitiba, Brazil
[2] Santa Catarina State Univ, Dept Petr Engn, UDESC, Balneario, Brazil
[3] Fed Univ Technol Parana UTFPR, Res Ctr forRheol & Nonnewtonian Fluids CERNN, Postgrad Program Mech & Mat Engn, BR-81280340 Curitiba, PR, Brazil
关键词
GPU; lattice Boltzmann method; moment representation; parallel computing; single-precision; MODEL; HYDRODYNAMICS; SIMULATIONS; PERFORMANCE; EQUATION; SOLVER; FLOW;
D O I
10.1002/fld.5185
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We implement the moment representation of the lattice Boltzmann method in a graphic processing unit (GPU) environment to study the computational performance of three-dimensional fluid flows. The moment representation of the lattice Boltzmann method (MRLBM) uses up to second-order moments of the particle distribution function to regularize and reconstruct it. By adopting this method, there is a reduction in memory usage and global memory transfer and, therefore, increased performance. The results show an increase of up to 40% in speed compared to population schemes. The validation results show there was no loss of accuracy when using single precision for turbulent flows. The adoption of single-precision also enables higher processing speed for GPUs with low double-precision capability and reduces the memory footprint, which can further increase performance. The implementation here presented provides a fast and straightforward environment for fluid simulation by combining single-precision and the MRLBM.
引用
收藏
页码:1076 / 1089
页数:14
相关论文
共 46 条
[1]   Projecting LBM performance on Exascale class Architectures: A tentative outlook [J].
Amati, Giorgio ;
Succi, Sauro ;
Fanelli, Pierluigi ;
Krastev, Vesselin K. ;
Falcucci, Giacomo .
JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 55 (55)
[2]   Multi-GPU immersed boundary method hemodynamics simulations [J].
Ames, Jeff ;
Puleri, Daniel F. ;
Balogh, Peter ;
Gounley, John ;
Draeger, Erik W. ;
Randles, Amanda .
JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 44
[3]  
Bailey Peter, 2009, Proceedings of the 2009 International Conference on Parallel Processing (ICPP 2009), P550, DOI 10.1109/ICPP.2009.38
[4]  
Beny J., 2019, EFFICIENT LBM GPUS D, V1, P1
[5]   THE TAYLOR-GREEN VORTEX AND FULLY-DEVELOPED TURBULENCE [J].
BRACHET, ME ;
MEIRON, D ;
ORSZAG, S ;
NICKEL, B ;
MORF, R ;
FRISCH, U .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :1049-1063
[6]   Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows [J].
Feng, Yongliang ;
Boivin, Pierre ;
Jacob, Jerome ;
Sagaut, Pierre .
PHYSICAL REVIEW E, 2019, 100 (02)
[7]   Fully-resolved simulations of a sphere settling in an initially unstructured thixo-viscoplastic fluid [J].
Ferrari, Marco A. ;
Lugarini, Alan ;
Franco, Admilson T. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2021, 294
[8]   Under-resolved and large eddy simulations of a decaying Taylor-Green vortex with the cumulant lattice Boltzmann method [J].
Geier, Martin ;
Lenz, Stephan ;
Schoenherr, Martin ;
Krafczyk, Manfred .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2021, 35 (02) :169-208
[9]  
Geier M, 2017, COMPUTATION, V5, DOI 10.3390/computation5020019
[10]   The cumulant lattice Boltzmann equation in three dimensions: Theory and validation [J].
Geier, Martin ;
Schoenherr, Martin ;
Pasquali, Andrea ;
Krafczyk, Manfred .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) :507-547