Bulk-interface correspondences for one-dimensional topological materials with inversion symmetry

被引:8
|
作者
Thiang, Guo Chuan [1 ]
Zhang, Hai [2 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 479卷 / 2270期
关键词
bulk-interface correspondence; topological insulator; inversion symmetry; EDGE; SOLITONS; NUMBER; STATES;
D O I
10.1098/rspa.2022.0675
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interface between two materials described by spectrally gapped Hamiltonians is expected to host an in-gap interface mode, whenever a certain topological invariant changes across the interface. We provide a precise statement of this bulk-interface correspondence and its rigorous justification. The correspondence applies to continuum and lattice models of interfaces between one-dimensional materials with inversion symmetry, with dislocation models being of particular interest. For continuum models, the analysis of the parity of the 'edge' Bloch modes is the key component in our argument, while for the lattice models, the relative Zak phase and index theory are.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Some topological states in one-dimensional cold atomic systems
    Mei, Feng
    Zhang, Dan-Wei
    Zhu, Shi-Liang
    ANNALS OF PHYSICS, 2015, 358 : 58 - 82
  • [32] One-Dimensional Helical Transport in Topological Insulator Nanowire Interferometers
    Hong, Seung Sae
    Zhang, Yi
    Cha, Judy J.
    Qi, Xiao-Liang
    Cui, Yi
    NANO LETTERS, 2014, 14 (05) : 2815 - 2821
  • [33] Interplay of disorder and PT symmetry in one-dimensional optical lattices
    Mejia-Cortes, Cristian
    Molina, Mario I.
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [34] Artificial topological models based on a one-dimensional spin-dependent optical lattice
    Zheng, Zhen
    Pu, Han
    Zou, Xubo
    Guo, Guangcan
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [35] Universal properties of boundary and interface charges in multichannel one-dimensional continuum models
    Piasotski, Kiryl
    Mueller, Niclas
    Kennes, Dante M.
    Schoeller, Herbert
    Pletyukhov, Mikhail
    PHYSICAL REVIEW B, 2022, 106 (16)
  • [36] Universal properties of boundary and interface charges in continuum models of one-dimensional insulators
    Miles, Sebastian
    Kennes, Dante M.
    Schoeller, Herbert
    Pletyukhov, Mikhail
    PHYSICAL REVIEW B, 2021, 104 (15)
  • [37] One-dimensional van der Waals quantum materials
    Balandin, Alexander A.
    Kargar, Fariborz
    Salguero, Tina T.
    Lake, Roger K.
    MATERIALS TODAY, 2022, 55 : 74 - 91
  • [38] Gap solitons in a one-dimensional driven-dissipative topological lattice
    Pernet, Nicolas
    St-Jean, Philippe
    Solnyshkov, Dmitry D.
    Malpuech, Guillaume
    Zambon, Nicola Carlon
    Fontaine, Quentin
    Real, Bastian
    Jamadi, Omar
    Lemaitre, Aristide
    Morassi, Martina
    Le Gratiet, Luc
    Baptiste, Teo
    Harouri, Abdelmounaim
    Sagnes, Isabelle
    Amo, Alberto
    Ravets, Sylvain
    Bloch, Jacqueline
    NATURE PHYSICS, 2022, 18 (06) : 678 - +
  • [39] Fractional topological phase in one-dimensional flat bands with nontrivial topology
    Guo, Huaiming
    Shen, Shun-Qing
    Feng, Shiping
    PHYSICAL REVIEW B, 2012, 86 (08):
  • [40] Engineering one-dimensional topological phases on p-wave superconductors
    Sahlberg, Isac
    Weststrom, Alex
    Poyhonen, Kim
    Ojanen, Teemu
    PHYSICAL REVIEW B, 2017, 95 (18)