Modified ridge-type estimator for the zero inflated negative binomial regression model

被引:2
作者
Akram, Muhammad Nauman [1 ]
Afzal, Nimra [2 ]
Amin, Muhammad [1 ]
Batool, Asia [1 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
关键词
Multicollinearity; shrinkage parameters; ZINBLE; ZINBMRT; ZINBRE; POISSON REGRESSION; COUNT DATA; PERFORMANCE; SIMULATION; PARAMETER; ERRORS;
D O I
10.1080/03610918.2023.2179070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Zero-inflated negative binomial (ZINB) regression models are commonly used for count data that shows an over-dispersion and extra zeros. Multicollinearity is considered to be a significant issue in the estimation of parameters in the ZINB regression model. Thus, to alleviate the negative effects of multicollinearity, a new estimator called ZINB modified ridge type (ZINBMRT) estimator is proposed. Furthermore, we proposed some new approaches to estimate the shrinkage parameters for the ZINBMRT estimator. A Monte Carlo simulation study and illustrative example are given to show the superiority of the proposed ZINBMRT estimator over some of the existing estimation methods. Based on the findings of simulation study and example, it is observed that the proposed ZINBMRT estimator under different suggested parameters give a better performance over the other competitive estimators.
引用
收藏
页码:5305 / 5322
页数:18
相关论文
共 53 条
[1]  
Abonazel M., 2018, International Journal of Mathematics and Computational Science, V4, P18
[2]   Liu-Type Multinomial Logistic Estimator [J].
Abonazel, Mohamed R. ;
Farghali, Rasha A. .
SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (02) :203-225
[3]   Modified ridge-type estimator for the inverse Gaussian regression model [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Ullah, Muhammad Aman ;
Afzal, Saima .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (10) :3314-3332
[4]   Two-parameter estimator for the inverse Gaussian regression model [J].
Akram, Muhammad Naumanm ;
Amin, Muhammad ;
Amanullah, Muhammad .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) :6208-6226
[5]  
Al-Taweel Y., 2020, PERIODICALS ENG NATU, V8, P248, DOI DOI 10.21533/PEN.V8I1.1107
[6]   Proposed methods in estimating the ridge regression parameter in Poisson regression model [J].
Alanaz, Mazin M. ;
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (02) :506-515
[7]   Performance of ridge estimator in inverse Gaussian regression model [J].
Algamal, Zakariya Yahya .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) :3836-3849
[8]   Developing a ridge estimator for the gamma regression model [J].
Algamal, Zakariya Yahya .
JOURNAL OF CHEMOMETRICS, 2018, 32 (10)
[9]   Shrinkage estimators for gamma regression model [J].
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) :253-268
[10]  
Alobaidi NN, 2021, THAIL STATIST, V19, P116