SINGULAR ELLIPTIC PROBLEMS WITH DIRICHLET OR MIXED DIRICHLET-NEUMANN NON-HOMOGENEOUS BOUNDARY CONDITIONS

被引:12
|
作者
Godoy, Tomas [1 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron Fis & Comp, Av Medina Allende S-N,Ciudad Univ, Cordoba, Argentina
关键词
singular elliptic problems; mixed boundary conditions; weak solutions; POSITIVE SOLUTIONS; EQUATION; EXISTENCE; BIFURCATION;
D O I
10.7494/OpMath.2023.43.1.19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a C-2 bounded domain in R-n such that partial derivative Omega = Gamma(1) boolean OR Gamma(2), where Gamma(1) and Gamma(2) are disjoint closed subsets of partial derivative Omega, and consider the problem -Delta u = g(. , u) in Omega, u = tau on Gamma(1), partial derivative u/partial derivative nu = eta on Gamma(2), where 0 <= t is an element of W-1/2,W-2(Gamma(1)), eta is an element of (H-0,Gamma 1(1), (Omega))', and g : Omega x(0,infinity) -> R is a nonnegative Caratheodory function. Under suitable assumptions on g and eta we prove the existence and uniqueness of a positive weak solution of this problem. Our assumptions allow g to be singular at s = 0 and also at x is an element of S for some suitable subsets S subset of (Omega) over bar. The Dirichlet problem -Delta u = g(., u) in Omega, u = sigma on partial derivative Omega is also studied in the case when 0 <= sigma is an element of W-1/2,W-2 (Omega).
引用
收藏
页码:19 / 46
页数:28
相关论文
共 50 条
  • [1] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [2] Positive solutions for singular elliptic equations with mixed Dirichlet-Neumann boundary conditions
    Li, Yuanyuan
    Ruf, Bernhard
    Guo, Qianqiao
    Niu, Pengcheng
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (04) : 374 - 397
  • [3] Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions
    José Carmona
    Eduardo Colorado
    Tommaso Leonori
    Alejandro Ortega
    Fractional Calculus and Applied Analysis, 2020, 23 : 1208 - 1239
  • [4] Nonlocal critical exponent singular problems under mixed Dirichlet-Neumann boundary conditions
    Mukherjee, Tuhina
    Pucci, Patrizia
    Sharma, Lovelesh
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [5] SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (04) : 1208 - 1239
  • [6] Hardy-Sobolev critical singular elliptic equations with mixed Dirichlet-Neumann boundary conditions
    Ding, Ling
    Tang, Chun-Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 3668 - 3689
  • [7] Elliptic equations involving supercritical Sobolev growth with mixed Dirichlet-Neumann boundary conditions
    de Assis, Heitor R.
    Faria, Luiz F. O.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 713 - 728
  • [8] POSITIVE SOLUTIONS FOR CRITICAL QUASILINEAR ELLIPTIC EQUATIONS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Ding, Ling
    Tang, Chunlei
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (02) : 443 - 470
  • [9] BOUNDEDNESS AND A PRIORI ESTIMATES OF SOLUTIONS TO ELLIPTIC SYSTEMS WITH DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Kelemen, Sandor
    Quittner, Pavol
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (03) : 731 - 740
  • [10] Regularity of solutions to a fractional elliptic problem with mixed Dirichlet-Neumann boundary data
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) : 521 - 539