Accelerated point set registration method

被引:0
|
作者
Raettig, Ryan M. [1 ]
Anderson, James D. [2 ]
Nykl, Scott L. [1 ]
Merkle, Laurence D. [1 ]
机构
[1] Air Force Inst Technol, Dept Elect & Comp Engn, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA
[2] Wright State Univ, Dept Comp Sci & Engn, Dayton, OH 45435 USA
来源
JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS | 2024年 / 21卷 / 04期
关键词
Point set registration; ICP; parallel computing; GPU; CUDA; optimization;
D O I
10.1177/15485129221150454
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In computer vision and robotics, point set registration is a fundamental issue used to estimate the relative position and orientation (pose) of an object in an environment. In a rapidly changing scene, this method must be executed frequently and in a timely manner, or the pose estimation becomes outdated. The point registration method is a computational bottleneck of a vision-processing pipeline. For this reason, this paper focuses on speeding up a widely used point registration method, the iterative closest point (ICP) algorithm. In addition, the ICP algorithm is transformed into a massively parallel algorithm and mapped onto a vector processor to realize a speedup of approximately an order of magnitude. Finally, we provide algorithmic and run-time analysis.
引用
收藏
页码:421 / 440
页数:20
相关论文
共 50 条
  • [1] Robust Point Set Registration Using Signature Quadratic Form Distance
    Li, Liang
    Yang, Ming
    Wang, Chunxiang
    Wang, Bing
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2097 - 2109
  • [2] FuzzyPSReg: Strategies of Fuzzy Cluster-Based Point Set Registration
    Liao, Qianfang
    Sun, Da
    Andreasson, Henrik
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (04) : 2632 - 2651
  • [3] Point set registration via rigid transformation consensus
    Li, Zhaolong
    Wang, Cheng
    Ma, Jieying
    Li, Zhongyu
    Zhu, Jihua
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [4] Graph Correspondence-Based Point Set Registration
    Li, Liang
    Yang, Ming
    Wang, Chunxiang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (07): : 4101 - 4112
  • [5] Precise Point Set Registration Based on Feature Fusion
    Liu, Yuying
    Du, Shaoyi
    Cui, Wenting
    Wang, Xijing
    Mou, Qingnan
    Zhao, Jiamin
    Guo, Yucheng
    Zhang, Yong
    COMPUTER JOURNAL, 2021, 64 (07): : 1039 - 1055
  • [6] A Review of Point Set Registration: From Pairwise Registration to Groupwise Registration
    Zhu, Hao
    Guo, Bin
    Zou, Ke
    Li, Yongfu
    Yuen, Ka-Veng
    Mihaylova, Lyudmila
    Leung, Henry
    SENSORS, 2019, 19 (05)
  • [7] Multiple Kernel Point Set Registration
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (06) : 1381 - 1394
  • [8] Assessing Losses for Point Set Registration
    Tavares, Anderson C. M.
    Lawin, Felix Jaremo
    Forssen, Per-Erik
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 3360 - 3367
  • [9] Point set registration based on feature point constraints
    Li, Mai
    Zhang, Mingxuan
    Niu, Dongmei
    Hassan, Muhammad Umair
    Zhao, Xiuyang
    Li, Na
    VISUAL COMPUTER, 2020, 36 (09): : 1725 - 1738
  • [10] Point set registration based on feature point constraints
    Mai Li
    Mingxuan Zhang
    Dongmei Niu
    Muhammad Umair Hassan
    Xiuyang Zhao
    Na Li
    The Visual Computer, 2020, 36 : 1725 - 1738