Multiplicity and concentration results for fractional Kirchhoff equation with magnetic field

被引:0
作者
Zhang, Weiqiang [1 ]
Wen, Yanyun [1 ]
Zhao, Peihao [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou, Gansu, Peoples R China
关键词
Fractional Kirchhoff equation; magnetic field; concentrating phenomenon; Ljusternik-Schnirelmann theory; POSITIVE SOLUTIONS; SCHRODINGER-EQUATION; EXISTENCE;
D O I
10.1080/17476933.2022.2133111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we considered the fractional Kirchhoff equation with magnetic field (a epsilon(2s) + b epsilon(4s-3)[u](A/epsilon)(2) )(- Delta)(A/e)(s) u + V(x)u = f (vertical bar u vertical bar(2))u in R-3, where epsilon is a small parameter, a, b are positive constants, s is an element of (3/4, 1), A : R-3 -> R-3 is a Holder continuous magnetic potential with exponent alpha is an element of (0, 1], [u](A/epsilon)(2) = integral integral(6)(R) vertical bar u(x)-epsilon"(x-y)A/epsilon(x+y/2)u(y)(2)vertical bar/vertical bar x-y vertical bar 3+2s dxdy. With proper assumptions on V and f, we develop a new approach to prove the Palais-Smale condition for the corresponding energy functional and establish the multiplicity and concentration of solutions by using perturbation techniques and Ljusternik-Schnirelmann theory.
引用
收藏
页码:349 / 364
页数:16
相关论文
共 20 条
[1]   A multiplicity result for a nonlinear fractional Schrodinger equation in RN without the Ambrosetti-Rabinowitz condition [J].
Alves, Claudianor O. ;
Ambrosio, Vincenzo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) :498-522
[2]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[3]  
Ambrosio V., 2021, PROC ROY SOC EDINB S, V28, P1
[4]   MULTIPLE CONCENTRATING SOLUTIONS FOR A FRACTIONAL KIRCHHOFF EQUATION WITH MAGNETIC FIELDS [J].
Ambrosio, Vincenzo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (02) :781-815
[5]   Concentrating solutions for a fractional Kirchhoff equation with critical growth [J].
Ambrosio, Vincenzo .
ASYMPTOTIC ANALYSIS, 2020, 116 (3-4) :249-278
[6]   A local mountain pass approach for a class of fractional NLS equations with magnetic fields [J].
Ambrosio, Vincenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
[7]   Existence and concentration results for some fractional Schrodinger equations in with magnetic fields [J].
Ambrosio, Vincenzo .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (08) :637-680
[8]   Nonlinear fractional magnetic Schrodinger equation: Existence and multiplicity [J].
Ambrosio, Vincenzo ;
d'Avenia, Pietro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (05) :3336-3368
[9]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062
[10]  
Applebaum D, 2009, CAM ST AD M, V93, P1