Development of energy-optimum aromatic extraction processes using ionic liquid [EMIM][NTf2]

被引:8
作者
McNeeley, Adam [1 ]
Tsai, Chang-Che [2 ]
Lin, Shiang-Tai [2 ]
Liu, Y. A. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, AspenTech Ctr Excellence Proc Syst Engn, Dept Chem Engn, Blacksburg, VA 24061 USA
[2] Natl Taiwan Univ, Dept Chem Engn, Taipei, Taiwan
关键词
aromatic extraction; ionic liquids; novel separations; process integration; process optimization; CONCEPTUAL DESIGN; SEPARATION; HYDROCARBONS; NAPHTHA; SULFOLANE; DATABASE; MIXTURE; SOLVENT;
D O I
10.1002/aic.17888
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
There is industrial incentive to extract aromatics from ethylene cracker feeds, but the conventional sulfolane solvent was found not economical by Meindersma and coworkers. Ionic liquids (ILs) have long been considered alternative aromatic extraction solvents. This work develops energy-optimum aromatic extraction processes for an ethylene cracker feed using IL solvents. We avoid pitfalls of using simplified feeds and a priori thermodynamic property estimates, with the largest set of experimentally regressed UNIQUAC binary parameters for the IL, 1-ethyl-3-methylimidazolium bis([trifluoromethyl]sulfonyl)imide ([EMIM][NTf2]). We screen process energy and operating conditions for [EMIM][NTf2] and sulfolane at varying aromatic feed contents and find [EMIM][NTf2] favorable at low aromatic feed contents. Adding light and heavy components of the ethylene cracker feed necessitates process modifications. Our novel steam-assisted extractive distillation developed for [EMIM][NTf2] is also suitable for sulfolane. We show that the [EMIM][NTf2] solvent can reduce 10.7% of energy consumption compared to sulfolane using the same novel process.
引用
收藏
页数:19
相关论文
共 42 条
[21]   A priori phase equilibrium prediction from a segment contribution solvation model [J].
Lin, ST ;
Sandler, SI .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (05) :899-913
[22]  
Liu A., 2016, Handbook of Petroleum Refining Processes, V4th
[23]   Conceptual process design for aromatic/aliphatic separation with ionic liquids [J].
Meindersma, G. W. ;
de Haan, A. B. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2008, 86 (7A) :745-752
[24]  
Meindersma G.W., 2005, Extraction of Aromatics from Naphtha with Ionic Liquids
[25]  
Meindersma GW, 2009, ACS SYM SER, V1030, P255
[26]   Ionic Liquids for Aromatics Extraction. Present Status and Future Outlook [J].
Meindersma, G. Wytze ;
Hansmeier, Antje R. ;
de Haan, Andre B. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (16) :7530-7540
[27]   Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures [J].
Meindersma, GW ;
Podt, AJG ;
de Haan, AB .
FUEL PROCESSING TECHNOLOGY, 2005, 87 (01) :59-70
[28]   Sigma-profile database for using COSMO-based thermodynamic methods [J].
Mullins, Eric ;
Oldland, Richard ;
Liu, Y. A. ;
Wang, Shu ;
Sandler, Stanley I. ;
Chen, Chau-Chyun ;
Zwolak, Michael ;
Seavey, Kevin C. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (12) :4389-4415
[29]   Stripping Columns to Regenerate Ionic Liquids and Selectively Recover Hydrocarbons Avoiding Vacuum Conditions [J].
Navarro, Pablo ;
Moreno, Daniel ;
Alvarez, Jorge ;
Santiago, Ruben ;
Hospital-Benito, Daniel ;
Ferro, Victor R. ;
Palomar, Jose .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (44) :20370-20380
[30]   Dearomatization of pyrolysis gasoline by extractive distillation with 1-ethyl-3-methylimidazolium tricyanomethanide [J].
Navarro, Pablo ;
de Dios-Garcia, Ignacio ;
Larriba, Marcos ;
Delgado-Mellado, Noemi ;
Ayuso, Miguel ;
Moreno, Daniel ;
Palomar, Jose ;
Garcia, Julian ;
Rodriguez, Francisco .
FUEL PROCESSING TECHNOLOGY, 2019, 195