Analytic smoothing effect of the spatially inhomogeneous Landau equations for hard potentials

被引:4
作者
Cao, Hongmei [1 ,2 ]
Li, Wei-Xi [3 ,4 ]
Xu, Chao-Jiang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Math, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab Math MIIT, Nanjing 210016, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Hubei, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2023年 / 176卷
关键词
Landau equations; Analytic regularization; Subelliptic equations; HOMOGENEOUS BOLTZMANN-EQUATION; CAUCHY-PROBLEM; GEVREY REGULARITY; GLOBAL EXISTENCE; WEAK SOLUTIONS; ANGULAR CUTOFF; HYPOELLIPTICITY; PROPAGATION;
D O I
10.1016/j.matpur.2023.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spatially inhomogeneous Landau equations with hard potential in the perturbation setting, and establish the analytic smoothing effect in both spatial and velocity variables for a class of low-regularity weak solutions. This shows the Landau equations behave essentially as the hypoelliptic Fokker-Planck operators. The spatial analyticity relies on a new time-average operator, and the proof is based on a straightforward energy estimate with a careful estimate on the derivatives with respect to the new time-average operator.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:138 / 182
页数:45
相关论文
共 57 条
  • [21] Chen H, 2009, ACTA MATH SCI, V29, P673
  • [22] Chen H, 2008, KINET RELAT MOD, V1, P355
  • [23] Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations
    Chen, Hua
    Li, Wei-Xi
    Xu, Chao-Jiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 320 - 339
  • [24] DERRIDJ M, 1973, J MATH PURE APPL, V52, P309
  • [25] Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff
    Desvillettes, L
    Wennberg, B
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) : 133 - 155
  • [26] On the spatially homogeneous landau equation for hard potentials - Part I: Existence, uniqueness and smoothness
    Desvillettes, L
    Villani, C
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (1-2) : 179 - 259
  • [27] Desvillettes L, 2009, T AM MATH SOC, V361, P1731
  • [28] ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY
    DIPERNA, RJ
    LIONS, PL
    [J]. ANNALS OF MATHEMATICS, 1989, 130 (02) : 321 - 366
  • [29] Gevrey regularity of mild solutions to the non-cutoff Boltzmann equation
    Duan, Renjun
    Li, Wei-Xi
    Liu, Lvqiao
    [J]. ADVANCES IN MATHEMATICS, 2022, 395
  • [30] Global Mild Solutions of the Landau andNon-CutoffBoltzmann Equations
    Duan, Renjun
    Liu, Shuangqian
    Sakamoto, Shota
    Strain, Robert M.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (05) : 932 - 1020