Analytic smoothing effect of the spatially inhomogeneous Landau equations for hard potentials

被引:4
作者
Cao, Hongmei [1 ,2 ]
Li, Wei-Xi [3 ,4 ]
Xu, Chao-Jiang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Math, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab Math MIIT, Nanjing 210016, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Hubei, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2023年 / 176卷
关键词
Landau equations; Analytic regularization; Subelliptic equations; HOMOGENEOUS BOLTZMANN-EQUATION; CAUCHY-PROBLEM; GEVREY REGULARITY; GLOBAL EXISTENCE; WEAK SOLUTIONS; ANGULAR CUTOFF; HYPOELLIPTICITY; PROPAGATION;
D O I
10.1016/j.matpur.2023.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spatially inhomogeneous Landau equations with hard potential in the perturbation setting, and establish the analytic smoothing effect in both spatial and velocity variables for a class of low-regularity weak solutions. This shows the Landau equations behave essentially as the hypoelliptic Fokker-Planck operators. The spatial analyticity relies on a new time-average operator, and the proof is based on a straightforward energy estimate with a careful estimate on the derivatives with respect to the new time-average operator.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:138 / 182
页数:45
相关论文
共 57 条
  • [1] Entropy dissipation and long-range interactions
    Alexandre, R
    Desvillettes, L
    Villani, C
    Wennberg, B
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) : 327 - 355
  • [2] The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C. -J.
    Yang, T.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) : 915 - 1010
  • [3] Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C. -J.
    Yang, T.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) : 513 - 581
  • [4] THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF IN THE WHOLE SPACE: II, GLOBAL EXISTENCE FOR HARD POTENTIAL
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C-J
    Yang, T.
    [J]. ANALYSIS AND APPLICATIONS, 2011, 9 (02) : 113 - 134
  • [5] On the Boltzmann equation for long-range interactions
    Alexandre, R
    Villani, C
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) : 30 - 70
  • [6] Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff
    Alexandre, Radjesvarane
    Herau, Frederic
    Li, Wei-Xi
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 : 1 - 71
  • [7] Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff
    Alexandre, Radjesvarane
    Morimoto, Yoshinori
    Ukai, Seiji
    Xu, Chao-Jiang
    Yang, Tong
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2012, 52 (03) : 433 - 463
  • [8] Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation
    Alexandre, Radjesvarane
    Morimoto, Yoshinori
    Ukai, Seiji
    Xu, Chao-Jiang
    Yang, Tong
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) : 39 - 123
  • [9] Alonso R, 2023, J STAT PHYS, V190, DOI 10.1007/s10955-022-03053-8
  • [10] Non-cutoff Boltzmann equation with polynomial decay perturbations
    Alonso, Ricardo
    Morimoto, Yoshinori
    Sun, Weiran
    Yang, Tong
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (01) : 189 - 292