Minimality and distributional chaos in triangular maps

被引:0
作者
Balibrea, Francisco [1 ]
Rucka, Lenka [2 ]
机构
[1] Univ Murcia, Dept Math, Murcia 30100, Spain
[2] Silesian Univ Opava, Math Inst, Opava, Czech Republic
关键词
Minimality; triangular maps; distributional chaos; Sharkovsky classification; 3; VERSIONS;
D O I
10.1080/10236198.2023.2293114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The result of this paper contributes to the classification of triangular maps of the square with zero topological entropy stated by A. N. Sharkovsky in the 1980s. The problem was if a triangular map of the square such that its any omega-limit set contains unique minimal set can be distributionally chaotic. So far such result was disproved only for the class of triangular maps non-decreasing on fibres [L. Paganoni, J. Smital, Strange distributionally chaotic triangular maps, Chaos Solitons Fractals 26(2) (2005), pp. 581-589]. In this paper, we solve the problem in negative for all triangular maps of the square, correcting the original result from Balibrea and Smital [Strong distributional chaos and minimal sets, Topology appl. 156 (2009), pp. 1673-1678].
引用
收藏
页码:1662 / 1670
页数:9
相关论文
共 50 条
[31]   Reiterative Distributional Chaos in Non-autonomous Discrete Systems [J].
Yin, Zongbin ;
Xiang, Qiaomin ;
Wu, Xinxing .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
[32]   Specification properties and dense distributional chaos [J].
Oprocha, Piotr .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (04) :821-833
[33]   On variants of distributional chaos in dimension one [J].
Malek, Michal ;
Oprocha, Piotr .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (03) :273-285
[34]   Generic and dense distributional chaos with shadowing [J].
Kawaguchi, Noriaki .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (10) :1456-1481
[35]   Distributional chaos via isolating segments [J].
Oprocha, Piotr ;
Wilczynski, Pawel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (02) :347-356
[36]   A Class of Hyperspace Systems and Distributional Chaos [J].
Wang Wei ;
Zhu Xiaogang .
APPLIED MECHANICS, MATERIALS AND MANUFACTURING IV, 2014, 670-671 :1570-1572
[37]   Distributional chaos for operators on Banach spaces [J].
Bernardes, N. C., Jr. ;
Bonilla, A. ;
Peris, A. ;
Wu, X. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) :797-821
[38]   Reiterative Distributional Chaos on Banach Spaces [J].
Bonilla, Antonio ;
Kostic, Marko .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (14)
[39]   Generalized specification property and distributional chaos [J].
Balibrea, F ;
Schweizer, B ;
Sklar, A ;
Smítal, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07) :1683-1694
[40]   MIXING INVARIANT EXTREMAL DISTRIBUTIONAL CHAOS [J].
Wang, Lidong ;
Wang, Xiang ;
Lei, Fengchun ;
Liu, Heng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) :6533-6538