Minimality and distributional chaos in triangular maps

被引:0
作者
Balibrea, Francisco [1 ]
Rucka, Lenka [2 ]
机构
[1] Univ Murcia, Dept Math, Murcia 30100, Spain
[2] Silesian Univ Opava, Math Inst, Opava, Czech Republic
关键词
Minimality; triangular maps; distributional chaos; Sharkovsky classification; 3; VERSIONS;
D O I
10.1080/10236198.2023.2293114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The result of this paper contributes to the classification of triangular maps of the square with zero topological entropy stated by A. N. Sharkovsky in the 1980s. The problem was if a triangular map of the square such that its any omega-limit set contains unique minimal set can be distributionally chaotic. So far such result was disproved only for the class of triangular maps non-decreasing on fibres [L. Paganoni, J. Smital, Strange distributionally chaotic triangular maps, Chaos Solitons Fractals 26(2) (2005), pp. 581-589]. In this paper, we solve the problem in negative for all triangular maps of the square, correcting the original result from Balibrea and Smital [Strong distributional chaos and minimal sets, Topology appl. 156 (2009), pp. 1673-1678].
引用
收藏
页码:1662 / 1670
页数:9
相关论文
共 50 条
  • [21] A type of shadowing and distributional chaos
    Kawaguchi, Noriaki
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2021, 36 (04): : 572 - 585
  • [22] Shifts, rotations and distributional chaos
    Dongsheng Xu
    Kaili Xiang
    Shudi Liang
    Advances in Difference Equations, 2019
  • [23] Distributional chaos for backward shifts
    Martinez-Gimenez, Felix
    Oprocha, Piotr
    Peris, Alfredo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 607 - 615
  • [24] ON DISTRIBUTIONAL n-CHAOS
    Tan, Feng
    Fu, Heman
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (05) : 1473 - 1480
  • [25] Distributional Chaos on Uniform Spaces
    Sejal Shah
    Tarun Das
    Ruchi Das
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [26] DISTRIBUTIONAL CHAOS AND DISTRIBUTIONAL CHAOS IN A SEQUENCE OCCURRING ON A SUBSET OF THE ONE-SIDED SYMBOLIC SYSTEM
    Tang, Yanjie
    Yin, Jiandong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 95 - 108
  • [27] Invariant scrambled sets and distributional chaos
    Oprocha, Piotr
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (01): : 31 - 43
  • [29] Distributional chaos in random dynamical systems
    Kovac, Jozef
    Jankova, Katarina
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (04) : 455 - 480
  • [30] Distributional Chaos in Coupled Map Lattices
    Wang, Lidong
    Li, Bing
    Chu, Zhenyan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1067 - +