Minimality and distributional chaos in triangular maps

被引:0
|
作者
Balibrea, Francisco [1 ]
Rucka, Lenka [2 ]
机构
[1] Univ Murcia, Dept Math, Murcia 30100, Spain
[2] Silesian Univ Opava, Math Inst, Opava, Czech Republic
关键词
Minimality; triangular maps; distributional chaos; Sharkovsky classification; 3; VERSIONS;
D O I
10.1080/10236198.2023.2293114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The result of this paper contributes to the classification of triangular maps of the square with zero topological entropy stated by A. N. Sharkovsky in the 1980s. The problem was if a triangular map of the square such that its any omega-limit set contains unique minimal set can be distributionally chaotic. So far such result was disproved only for the class of triangular maps non-decreasing on fibres [L. Paganoni, J. Smital, Strange distributionally chaotic triangular maps, Chaos Solitons Fractals 26(2) (2005), pp. 581-589]. In this paper, we solve the problem in negative for all triangular maps of the square, correcting the original result from Balibrea and Smital [Strong distributional chaos and minimal sets, Topology appl. 156 (2009), pp. 1673-1678].
引用
收藏
页码:1662 / 1670
页数:9
相关论文
共 50 条
  • [1] On open problems concerning distributional chaos for triangular maps
    Balibrea, F.
    Smital, J.
    Stefankova, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 7342 - 7346
  • [2] Distributional chaos of tree maps
    Cánovas, JS
    Hric, R
    TOPOLOGY AND ITS APPLICATIONS, 2004, 137 (1-3) : 75 - 82
  • [3] Factor maps and invariant distributional chaos
    Forys, Magdalena
    Oprocha, Piotr
    Wilczynski, Pawel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) : 475 - 502
  • [4] Distributional Chaos and Dendrites
    Roth, Zuzana
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (14):
  • [5] Local Distributional Chaos
    Balibrea, Francisco
    Rucka, Lenka
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [6] Distributional chaos and irregular recurrence
    Obadalova, Lenka
    Smital, Jaroslav
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2190 - 2194
  • [7] Iteration Problem for Distributional Chaos
    Hantakova, Jana
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (12):
  • [8] Strong and weak distributional chaos
    Stefankova, M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (01) : 114 - 123
  • [9] On a problem of iteration invariants for distributional chaos
    Dvorakova, J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 785 - 787
  • [10] Strong distributional chaos and minimal sets
    Balibrea, F.
    Smital, J.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (09) : 1673 - 1678