共 37 条
A novel transfer learning approach based on deep degradation feature adaptive alignment for remaining useful life prediction with multi-condition data
被引:3
作者:

Lyu, Yi
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Zhongshan Inst, Sch Comp, Zhongshan 528400, Peoples R China
Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Zhongshan Inst, Sch Comp, Zhongshan 528400, Peoples R China

Wen, Zhenfei
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Zhongshan Inst, Sch Comp, Zhongshan 528400, Peoples R China

Chen, Aiguo
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Zhongshan Inst, Sch Comp, Zhongshan 528400, Peoples R China
机构:
[1] Univ Elect Sci & Technol China, Zhongshan Inst, Sch Comp, Zhongshan 528400, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
关键词:
Remaining useful life prediction;
Transfer learning;
Multi-condition data;
Deep feature adaptive alignment mechanism;
MODEL;
D O I:
10.1007/s10845-023-02264-4
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Transfer learning (TL) plays an important role in the remaining useful life (RUL) prediction when the training data and testing data are collected under different operating conditions. However, the existing studies have two problems: (1) Only using the single-condition data as the source domain may encounter negative transfer, especially when the operating conditions in the training and actual usage are vastly different. (2) Traditional domain adaptation methods only reduce the discrepancy of global feature distributions of source and target, and ignore the impact of local features. To tackle these problems, this paper proposes a novel TL approach based on deep degradation feature adaptive alignment, which uses multi-condition degradation datasets as the source domains and forms multiple domain pairs with the target data. A network framework with multiple parallel sub-networks is designed to extract the degradation features of all domain pairs, and a deep degradation feature adaptive alignment mechanism is developed that can minimize marginal and conditional distribution discrepancies and adaptively adjust their calculation proportions to align the global and local features of each domain pair. In the experiment, the RUL prediction performance is verified by using the turbofan engine dataset, and its advantages are validated by comparisons with other methods.
引用
收藏
页码:619 / 637
页数:19
相关论文
共 37 条
- [1] Analysis and Prediction of Defect Size and Remaining Useful Life of Thrust Ball Bearings: Modelling and Experiment Procedures[J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2017, 42 (11) : 4535 - 4546Boumahdi, Mouloud论文数: 0 引用数: 0 h-index: 0机构: Univ Medea, Lab Biomat & Transport Phenomena, Medea 26000, Algeria Univ Medea, Lab Biomat & Transport Phenomena, Medea 26000, AlgeriaRechak, Said论文数: 0 引用数: 0 h-index: 0机构: Natl Polytech Sch Algiers, Lab Mech Engn & Dev, Algiers, Algeria Univ Medea, Lab Biomat & Transport Phenomena, Medea 26000, AlgeriaHanini, Salah论文数: 0 引用数: 0 h-index: 0机构: Univ Medea, Lab Biomat & Transport Phenomena, Medea 26000, Algeria Univ Medea, Lab Biomat & Transport Phenomena, Medea 26000, Algeria
- [2] Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 185 : 372 - 382Chen Jinglong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Shaanxi, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Shaanxi, Peoples R ChinaJing Hongjie论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Shaanxi, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Shaanxi, Peoples R ChinaChang Yuanhong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Shaanxi, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Shaanxi, Peoples R ChinaLiu Qian论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Shaanxi, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Shaanxi, Peoples R China
- [3] A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings[J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (03) : 1243 - 1254Cheng, Cheng论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R ChinaMa, Guijun论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R ChinaZhang, Yong论文数: 0 引用数: 0 h-index: 0机构: Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R ChinaSun, Mingyang论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310007, Peoples R China Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R ChinaTeng, Fei论文数: 0 引用数: 0 h-index: 0机构: Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R ChinaDing, Han论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R ChinaYuan, Ye论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
- [4] Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions[J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (02) : 587 - 613Cheng, Han论文数: 0 引用数: 0 h-index: 0机构: Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R ChinaKong, Xianguang论文数: 0 引用数: 0 h-index: 0机构: Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R ChinaWang, Qibin论文数: 0 引用数: 0 h-index: 0机构: Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R ChinaMa, Hongbo论文数: 0 引用数: 0 h-index: 0机构: Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R ChinaYang, Shengkang论文数: 0 引用数: 0 h-index: 0机构: Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R ChinaChen, Gaige论文数: 0 引用数: 0 h-index: 0机构: Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
- [5] A nonlinear model for ductile damage accumulation under multiaxial non-proportional loading conditions[J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2016, 85 : 77 - 92Cortese, Luca论文数: 0 引用数: 0 h-index: 0机构: Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 5, I-39100 Bolzano, Italy Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 5, I-39100 Bolzano, ItalyNalli, Filippo论文数: 0 引用数: 0 h-index: 0机构: Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 5, I-39100 Bolzano, Italy Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 5, I-39100 Bolzano, ItalyRossi, Marco论文数: 0 引用数: 0 h-index: 0机构: Univ Politecn Marche, Via Brecce Bianche, I-60131 Ancona, Italy Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 5, I-39100 Bolzano, Italy
- [6] Remaining useful lifetime prediction via deep domain adaptation[J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 195da Costa, Paulo Roberto de Oliveira论文数: 0 引用数: 0 h-index: 0机构: Eindhoven Univ Technol, Dept Ind Engn, NL-5600 MB Eindhoven, Netherlands Eindhoven Univ Technol, Dept Ind Engn, NL-5600 MB Eindhoven, Netherlands论文数: 引用数: h-index:机构:Zhang, Yingqian论文数: 0 引用数: 0 h-index: 0机构: Eindhoven Univ Technol, Dept Ind Engn, NL-5600 MB Eindhoven, Netherlands Eindhoven Univ Technol, Dept Ind Engn, NL-5600 MB Eindhoven, NetherlandsKaymak, Uzay论文数: 0 引用数: 0 h-index: 0机构: Eindhoven Univ Technol, Dept Ind Engn, NL-5600 MB Eindhoven, Netherlands Eindhoven Univ Technol, Dept Ind Engn, NL-5600 MB Eindhoven, Netherlands
- [7] A novel method for journal bearing degradation evaluation and remaining useful life prediction under different working conditions[J]. MEASUREMENT, 2021, 177Ding, Ning论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Mech Engn, 800 Dongchuan RD, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Mech Engn, 800 Dongchuan RD, Shanghai 200240, Peoples R ChinaLi, Hulin论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Design, 800 Dongchuan RD, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Mech Engn, 800 Dongchuan RD, Shanghai 200240, Peoples R ChinaYin, Zhongwei论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Design, 800 Dongchuan RD, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Mech Engn, 800 Dongchuan RD, Shanghai 200240, Peoples R ChinaJiang, Fangmin论文数: 0 引用数: 0 h-index: 0机构: 608 Inst AECC, Zhuzhou 412002, Hunan, Peoples R China Shanghai Jiao Tong Univ, Sch Mech Engn, 800 Dongchuan RD, Shanghai 200240, Peoples R China
- [8] Transfer Learning for Remaining Useful Life Prediction Across Operating Conditions Based on Multisource Domain Adaptation[J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 4143 - 4152Ding, Yifei论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R ChinaDing, Peng论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R ChinaZhao, Xiaoli论文数: 0 引用数: 0 h-index: 0机构: Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R ChinaCao, Yudong论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R ChinaJia, Minping论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
- [9] Remaining useful life estimation using deep metric transfer learning for kernel regression[J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 212Ding, Yifei论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R ChinaJia, Minping论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R ChinaMiao, Qiuhua论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R ChinaHuang, Peng论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
- [10] Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing[J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230Dong, Shaojiang论文数: 0 引用数: 0 h-index: 0机构: Chongqing Jiaotong Univ, Sch Mech Engn, Chongqing 400074, Peoples R China Chongqing Jiaotong Univ, Sch Mech Engn, Chongqing 400074, Peoples R ChinaXiao, Jiafeng论文数: 0 引用数: 0 h-index: 0机构: Chongqing Jiaotong Univ, Sch Mech Engn, Chongqing 400074, Peoples R China Chongqing Jiaotong Univ, Sch Mech Engn, Chongqing 400074, Peoples R ChinaHu, Xiaolin论文数: 0 引用数: 0 h-index: 0机构: Chongqing Ind Big Data Innovat Ctr Co Ltd, Chongqing 404100, Peoples R China Chongqing Jiaotong Univ, Sch Mech Engn, Chongqing 400074, Peoples R ChinaFang, Nengwei论文数: 0 引用数: 0 h-index: 0机构: Chongqing Ind Big Data Innovat Ctr Co Ltd, Chongqing 404100, Peoples R China Chongqing Jiaotong Univ, Sch Mech Engn, Chongqing 400074, Peoples R ChinaLiu, Lanhui论文数: 0 引用数: 0 h-index: 0机构: Chongqing Ind Big Data Innovat Ctr Co Ltd, Chongqing 404100, Peoples R China Chongqing Jiaotong Univ, Sch Mech Engn, Chongqing 400074, Peoples R ChinaYao, Jinbao论文数: 0 引用数: 0 h-index: 0机构: Southwest Petr Univ, Sch Mechatron Engn, Chengdu 610500, Peoples R China Chongqing Jiaotong Univ, Sch Mech Engn, Chongqing 400074, Peoples R China