Effects of Composite Rheology on Plate-Like Behavior in Global-Scale Mantle Convection

被引:1
作者
Arnould, Maelis [1 ,2 ]
Rolf, Tobias [2 ,3 ]
Cordoba, Antonio Manjon-Cabeza [2 ,4 ,5 ]
机构
[1] Univ Lyon, UCBL, ENSL, UJM,CNRS UMR 5276,Lab Geol Lyon Terre,Planetes,Env, Lyon, France
[2] Univ Oslo, Ctr Earth Evolut & Dynam, Dept Geosci, Oslo, Norway
[3] Univ Munster, Inst Geophys, Munster, Germany
[4] Univ Granada, Andalusian Earth Sci Inst, Granada, Spain
[5] UCL, Dept Earth Sci, London, England
关键词
mantle rheology; geodynamic modeling; plate tectonics; mantle convection; composite rheology; SEISMIC ANISOTROPY; DEPENDENT VISCOSITY; DYNAMIC TOPOGRAPHY; ASTHENOSPHERE; DEFORMATION; EVOLUTION; MOTION;
D O I
10.1029/2023GL104146
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Earth's upper mantle rheology controls lithosphere-asthenosphere coupling and thus surface tectonics. Rock deformation experiments and seismic anisotropy measurements indicate that composite rheology (co-existing diffusion and dislocation creep) occurs in the Earth's uppermost mantle, potentially affecting convection and surface tectonics. Here, we investigate how the spatio-temporal distribution of dislocation creep in an otherwise diffusion-creep-controlled mantle impacts the planform of convection and the planetary tectonic regime as a function of the lithospheric yield strength in numerical models of mantle convection self-generating plate-like tectonics. The low upper-mantle viscosities caused by zones of substantial dislocation creep produce contrasting effects on surface dynamics. For strong lithosphere (yield strength > 35 MPa), the large lithosphere-asthenosphere viscosity contrasts promote stagnant-lid convection. In contrast, the increase of upper mantle convective vigor enhances plate mobility for lithospheric strength <35 MPa. For the here-used model assumptions, composite rheology does not facilitate the onset of plate-like behavior at large lithospheric strength.
引用
收藏
页数:12
相关论文
共 54 条
  • [11] Rheologic controls on slab dynamics
    Billen, Magali I.
    Hirth, Greg
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2007, 8
  • [12] Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation
    Billen, MI
    Hirth, G
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (19) : 1 - 4
  • [13] The impact of rheological uncertainty on dynamic topography predictions
    Bodur, Omer F.
    Rey, Patrice F.
    [J]. SOLID EARTH, 2019, 10 (06) : 2167 - 2178
  • [14] LIMITS ON LITHOSPHERIC STRESS IMPOSED BY LABORATORY EXPERIMENTS
    BRACE, WF
    KOHLSTEDT, DL
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1980, 85 (NB11): : 6248 - 6252
  • [15] CONVECTION WITH PRESSURE-DEPENDENT AND TEMPERATURE-DEPENDENT NON-NEWTONIAN RHEOLOGY
    CHRISTENSEN, U
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1984, 77 (02): : 343 - 384
  • [16] CONVECTION IN A VARIABLE-VISCOSITY FLUID - NEWTONIAN VERSUS POWER-LAW RHEOLOGY
    CHRISTENSEN, U
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 1983, 64 (01) : 153 - 162
  • [17] A mantle convection perspective on global tectonics
    Coltice, Nicolas
    Gerault, Melanie
    Ulvrova, Martina
    [J]. EARTH-SCIENCE REVIEWS, 2017, 165 : 120 - 150
  • [18] The misuse of colour in science communication
    Crameri, Fabio
    Shephard, Grace E.
    Heron, Philip J.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [19] The importance of grain size to mantle dynamics and seismological observations
    Dannberg, J.
    Eilon, Z.
    Faul, Ulrich
    Gassmoller, Rene
    Moulik, Pritwiraj
    Myhill, Robert
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2017, 18 (08): : 3034 - 3061
  • [20] Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia
    Debayle, E
    Kennett, B
    Priestley, K
    [J]. NATURE, 2005, 433 (7025) : 509 - 512