Building cooling load forecasting of IES considering spatiotemporal coupling based on hybrid deep learning model

被引:15
|
作者
Yu, Min [1 ,2 ]
Niu, Dongxiao [1 ,2 ]
Zhao, Jinqiu [3 ]
Li, Mingyu [1 ,2 ]
Sun, Lijie [1 ,2 ]
Yu, Xiaoyu [1 ,2 ]
机构
[1] North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Beijing Key Lab New Energy & Low Carbon Dev, Beijing 102206, Peoples R China
[3] Harbin Inst Technol Shenzhen, Sch Architecture, Shenzhen 51800, Peoples R China
关键词
Cooling load forecasting; Spatio-temporal coupling; Temporal trend-aware graph attention network; Gate temporal convolutional layer; ENERGY-CONSUMPTION; PREDICTION; OPTIMIZATION; NETWORKS; OPERATION;
D O I
10.1016/j.apenergy.2023.121547
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate short-term forecasting of building cooling load (CLF) in an integrated energy system (IES) is essential for effective building energy management. However, the existing CLF models for IES often treat each building as an independent entity and neglect the spatiotemporal correlation among buildings. To address this research gap and achieve accurate CLF, this paper proposes a new hybrid deep learning model that considers spatiotemporal coupling. First, the coupled spatial-temporal features among different buildings were analyzed, and the meteorological factors were screened based on the Spearman's rank order correlation coefficient (SROCC). Second, synchrosqueezing wavelet denoising (SWT) was adopted to denoise the historical cooling load (CL) data, remove high-frequency noise, and improve data quality. Third, the TTGAT-GTC model was constructed for the CLF of an IES. A temporal trend-aware graph attention network (TTGAT) captured the spatial correlation of CL between buildings. A gated temporal convolution layer (GTC) was constructed to extract the trend in the dynamic temporal variation in historical load. Residual and skip connections were applied to avoid gradient disappearance and increase the computational efficiency of the model. To validate the effectiveness of the proposed SWTTTGAT-GTC model, this paper compared the proposed model with four benchmark models using MAPE, RMSE, MAE, and R2. The experimental results showed that the performance of the proposed CL forecasting model is superior and that the proposed model appropriately introduces the spatio-temporal coupling information between buildings.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Stock Market Forecasting Based on Spatiotemporal Deep Learning
    Li, Yung-Chen
    Huang, Hsiao-Yun
    Yang, Nan-Ping
    Kung, Yi-Hung
    ENTROPY, 2023, 25 (09)
  • [22] Building heating load forecasting based on the theory of transient heat transfer and deep learning
    Shi, Zekun
    Zheng, Ruifan
    Shen, Rendong
    Yang, Dongfang
    Wang, Guangliang
    Liu, Yuanchao
    Li, Yang
    Zhao, Jun
    ENERGY AND BUILDINGS, 2024, 313
  • [23] A Hybrid Deep Learning Model with Evolutionary Algorithm for Short-Term Load Forecasting
    Al Mamun, Abdullah
    Hoq, Muntasir
    Hossain, Eklas
    Bayindir, Ramazan
    2019 8TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2019), 2019, : 886 - 891
  • [24] Potato Consumption Forecasting Based on a Hybrid Stacked Deep Learning Model
    Eed, Marwa
    Alhussan, Amel Ali
    Qenawy, Al-Seyday T.
    Osman, Ahmed M.
    Elshewey, Ahmed M.
    Arnous, Reham
    POTATO RESEARCH, 2024, : 809 - 833
  • [25] Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in China
    Wang, Fuyu
    Cen, Jian
    Yu, Zongwei
    Deng, Shijun
    Zhang, Guomin
    ENERGY REPORTS, 2022, 8 : 10950 - 10962
  • [26] Deep learning-based load forecasting considering data reshaping using MATLAB\Simulink
    Zhalla Hamad
    Ismael Abdulrahman
    International Journal of Energy and Environmental Engineering, 2022, 13 : 853 - 869
  • [27] Deep learning-based load forecasting considering data reshaping using MATLAB\Simulink
    Hamad, Zhalla
    Abdulrahman, Ismael
    INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENTAL ENGINEERING, 2022, 13 (2) : 853 - 869
  • [28] Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
    Liu, Yongqi
    Qin, Hui
    Zhang, Zhendong
    Pei, Shaoqian
    Jiang, Zhiqiang
    Feng, Zhongkai
    Zhou, Jianzhong
    APPLIED ENERGY, 2020, 260
  • [29] Optimization and research of smart grid load forecasting model based on deep learning
    Zhang, Dong
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 594 - 602
  • [30] A Decomposed and Feature-based Deep Learning Model for Power Load Forecasting
    El-Berawi, Ahmed Saied
    Belal, Mohamed
    29TH INTERNATIONAL CONFERENCE ON COMPUTER THEORY AND APPLICATIONS (ICCTA 2019), 2019, : 48 - 52