PepDRED: De Novo Peptide Design with Strong Binding Affinity for Target Protein

被引:2
|
作者
Azmat, Mehmoona [1 ,2 ,3 ,4 ]
Ghalandari, Behafarid [4 ]
Jessica, Jessica [4 ]
Xu, Yuechen [4 ]
Li, Xinle [4 ]
Su, Wenqiong [4 ]
Qiang, Zhang [4 ]
Deng, Shuxin [4 ]
Azmat, Tabina [5 ]
Jiang, Lai [1 ,2 ,3 ,4 ]
Ding, Xianting [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Anesthesiol, Shanghai 200230, Peoples R China
[2] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Surg Intens Care Unit, Shanghai 200230, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200230, Peoples R China
[4] Shanghai Jiao Tong Univ, Inst Personalized Med, State Key Lab Oncogenes & Related Genes, Shanghai 200230, Peoples R China
[5] AIR Univ, Dept, Cyber Secur, PAF Complex, E9, Islamabad 44000, Pakistan
关键词
PATHOGENIC BACTERIA; PREDICTIONS; BIOSENSOR; TRANSPORT; ASSAYS;
D O I
10.1021/acs.analchem.3c01057
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Denovo design of peptides that bind specifically to functionalproteins is beneficial for diagnostics and therapeutics. However,complex permutations and combinations of amino acids pose significantchallenges to the rational design of peptides with desirable stabilityand affinity. Herein, we develop a computational-based evolution method,namely, peptidomimetics-driven recognition elements design (PepDRED),to derive hemoglobin-inspired peptidomimetics. PepDRED mimics thenatural evolutionism pipeline to generate stable apovariant (AVs)structures for wild-type counterparts via automated point mutationsand validates their efficiency through free binding energy analysisand per residue energy decomposition analysis. For application demonstration,we applied PepDRED to design de novo peptides to bind FhuA, a typicalTonB-dependent transporter (TBDT). TBDTs are Gram-negative bacterialouter membrane proteins responsible for iron transport and vital forbacterial resistance. PepDRED generated a pool of AVs and proceededto reach an optimized peptide, AV440, with a remarkable binding affinityof -21 kcal/mol. AV440 is & SIM;2.5-fold stronger than theexisting FhuA inhibitor Microcin J25. Network energy analysis furtherunveils that incorporating methionine (M42) in the N-terminal regionsignificantly enhances inter-residue contacts and binding affinity.PepDRED offers a prompt and efficient in silico approach to developpotent peptide candidates for target proteins.
引用
收藏
页码:12264 / 12272
页数:9
相关论文
共 50 条
  • [1] Computational de novo design of antibodies binding to a peptide with high affinity
    Poosarla, Venkata Giridhar
    Li, Tong
    Goh, Boon Chong
    Schulten, Klaus
    Wood, Thomas K.
    Maranas, Costas D.
    BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (06) : 1331 - 1342
  • [2] Using de novo design to understand the effect of protein environment on calcium binding affinity
    Jones, LM
    Yang, W
    Ye, YM
    Yang, JJ
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 626A - 626A
  • [3] Design of peptide affinity ligands for S-protein: a comparison of combinatorial and de novo design strategies
    Divya Chandra
    Christopher J. Morrison
    James Woo
    Steven Cramer
    Pankaj Karande
    Molecular Diversity, 2013, 17 : 357 - 369
  • [4] Design of peptide affinity ligands for S-protein: a comparison of combinatorial and de novo design strategies
    Chandra, Divya
    Morrison, Christopher J.
    Woo, James
    Cramer, Steven
    Karande, Pankaj
    MOLECULAR DIVERSITY, 2013, 17 (02) : 357 - 369
  • [5] Design and Synthesis of De Novo Peptide for Manganese Binding
    Udai P. Singh
    Raj K. Singh
    Yashuhiro Isogai
    Yoshitsugu Shiro
    International Journal of Peptide Research and Therapeutics, 2006, 12 : 379 - 385
  • [6] Design and synthesis of de novo peptide for manganese binding
    Singh, Udai P.
    Singh, Raj K.
    Isogai, Yashuhiro
    Shiro, Yoshitsugu
    INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, 2006, 12 (04) : 379 - 385
  • [7] De novo design of protein binders for peptide recognition
    Torres, Susana Vazquez
    Lutz, Isaac
    Leung, Philip
    Watson, Joseph
    MacCoss, Michael
    Baker, David
    PROTEIN SCIENCE, 2023, 32
  • [8] De novo Protein Design for Targeted Binding of Zolpidem
    Lee, Jaekyoung
    Ji, Hyunsub
    Lee, Songha
    Shin, Dongsun
    Kim, Youngje
    PROTEIN SCIENCE, 2024, 33 : 88 - 88
  • [9] Target-Specific De Novo Peptide Binder Design with DiffPepBuilder
    Wang, Fanhao
    Wang, Yuzhe
    Feng, Laiyi
    Zhang, Changsheng
    Lai, Luhua
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024,
  • [10] De novo design of modular peptide-binding proteins by superhelical matching
    Wu, Kejia
    Bai, Hua
    Chang, Ya-Ting
    Redler, Rachel
    McNally, Kerrie E.
    Sheffler, William
    Brunette, T. J.
    Hicks, Derrick R.
    Morgan, Tomos E.
    Stevens, Tim J.
    Broerman, Adam
    Goreshnik, Inna
    DeWitt, Michelle
    Chow, Cameron M.
    Shen, Yihang
    Stewart, Lance
    Derivery, Emmanuel
    Silva, Daniel Adriano
    Bhabha, Gira
    Ekiert, Damian C.
    Baker, David
    NATURE, 2023, 616 (7957) : 581 - +