Artificial Intelligence Radiographic Analysis Tool for Total Knee Arthroplasty

被引:18
作者
Bonnin, Michel [1 ]
Muller-Fouarge, Florian [2 ]
Estienne, Theo [2 ]
Bekadar, Samir [2 ]
Pouchy, Charlotte [2 ]
Selmi, Tarik Ait Si [1 ]
机构
[1] Ctr Orthoped Santy, Lyon, France
[2] Deemea, Paris, France
关键词
total knee arthroplasty; image analysis; artificial intelligence; neural networks; prosthesis alignment; interface issue; CLASSIFICATION;
D O I
10.1016/j.arth.2023.02.053
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: The postoperative follow-up of a patient after total knee arthroplasty (TKA) requires regular evaluation of the condition of the knee through interpretation of X-rays. This rigorous analysis requires expertize, time, and methodical standardization. Our work evaluated the use of an artificial intelligence tool, X-TKA, to assist surgeons in their interpretation. Methods: A series of 12 convolutional neural networks were trained on a large database containing 39,751 X-ray images. These algorithms are able to determine examination quality, identify image characteristics, assess prosthesis sizing and positioning, measure knee-prosthesis alignment angles, and detect anomalies in the bone-cement-implant complex. The individual interpretations of a pool of senior surgeons with and without the assistance of X-TKA were evaluated on a reference dataset built in consensus by senior surgeons. Results: The algorithms obtained a mean area under the curve value of 0.98 on the quality assurance and the image characteristics tasks. They reached a mean difference for the predicted angles of 1.71 degrees (standard deviation, 1.53 degrees), similar to the surgeon average difference of 1.69 degrees (standard deviation, 1.52 degrees). The comparative analysis showed that the assistance of X-TKA allowed surgeons to gain 5% in accuracy and 12% in sensitivity in the detection of interface anomalies. Moreover, this study demonstrated a gain in repeatability for each single surgeon (Light's kappa +0.17), as well as a gain in the reproducibility between surgeons (Light's kappa +0.1). Conclusion: This study highlights the benefit of using an intelligent artificial tool for a standardized interpretation of postoperative knee X-rays and indicates the potential for its use in clinical practice. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:S199 / +
页数:11
相关论文
共 34 条
[1]  
Abdeltawab H, 2020, COMPUT MED IMAG GRAP, V81, DOI [10.1016/j.compmedimg.2020.101717, 10.1016/j.compmedimag.2020.101717]
[2]  
Amyar A, 2020, medRxiv, DOI [10.1101/2020.04.16.20064709, 10.1101/2020.04.16.20064709, DOI 10.1101/2020.04.16.20064709]
[3]  
Antony J, 2016, Arxiv, DOI arXiv:1609.02469
[4]   Cementless total knee arthroplasty [J].
Aprato, Alessandro ;
Risitano, Salvatore ;
Sabatini, Luigi ;
Giachino, Matteo ;
Agati, Gabriele ;
Massse, Alessandro .
ANNALS OF TRANSLATIONAL MEDICINE, 2016, 4 (07)
[5]   Computer aided Alzheimer's disease diagnosis by an unsupervised deep learning technology [J].
Bi, Xiuli ;
Li, Shutong ;
Xiao, Bin ;
Li, Yu ;
Wang, Guoyin ;
Ma, Xu .
NEUROCOMPUTING, 2020, 392 :296-304
[6]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[7]   The Liver Tumor Segmentation Benchmark (LiTS) [J].
Bilic, Patrick ;
Christ, Patrick ;
Li, Hongwei Bran ;
Vorontsov, Eugene ;
Ben-Cohen, Avi ;
Kaissis, Georgios ;
Szeskin, Adi ;
Jacobs, Colin ;
Mamani, Gabriel Efrain Humpire ;
Chartrand, Gabriel ;
Lohoefer, Fabian ;
Holch, Julian Walter ;
Sommer, Wieland ;
Hofmann, Felix ;
Hostettler, Alexandre ;
Lev-Cohain, Naama ;
Drozdzal, Michal ;
Amitai, Michal Marianne ;
Vivanti, Refael ;
Sosna, Jacob ;
Ezhov, Ivan ;
Sekuboyina, Anjany ;
Navarro, Fernando ;
Kofler, Florian ;
Paetzold, Johannes C. ;
Shit, Suprosanna ;
Hu, Xiaobin ;
Lipkova, Jana ;
Rempfler, Markus ;
Piraud, Marie ;
Kirschke, Jan ;
Wiestler, Benedikt ;
Zhang, Zhiheng ;
Huelsemeyer, Christian ;
Beetz, Marcel ;
Ettlinger, Florian ;
Antonelli, Michela ;
Bae, Woong ;
Bellver, Miriam ;
Bi, Lei ;
Chen, Hao ;
Chlebus, Grzegorz ;
Dam, Erik B. ;
Dou, Qi ;
Fu, Chi-Wing ;
Georgescu, Bogdan ;
Giro-I-Nieto, Xavier ;
Gruen, Felix ;
Han, Xu ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2023, 84
[8]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[9]   Machine Learning in Orthopedics: A Literature Review [J].
Cabitza, Federico ;
Locoro, Angela ;
Banfi, Giuseppe .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6
[10]   Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss [J].
Chen, Pingjun ;
Gao, Linlin ;
Shi, Xiaoshuang ;
Allen, Kyle ;
Yang, Lin .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 75 :84-92